Potassium channels in vascular smooth muscle. 1996

J E Brayden
Department of Pharmacology, The University of Vermont, Medical Research Facility, Colchester 05446, USA.

1. Regulation of smooth muscle membrane potential through changes in K+ channel activity and subsequent alterations in the activity of voltage-dependent calcium channels is a major mechanism of vasodilation and vasoconstriction, both in normal and pathophysiological conditions. The contribution of a given K+ channel type to this mechanism of vascular regulation depends on the vascular bed and species examined. 2. Multiple K+ channels are present in most vascular smooth muscle cells and these different K+ channels play unique roles in regulating vascular tone. Voltage-dependent K+ (Kv) channels are activated by depolarization, may contribute to steady state resting membrane potential and are inhibited by certain vasoconstrictors. Calcium-activated K+ (K(Ca)) channels oppose the depolarization associated with intrinsic vascular tone and are activated by some endogenous vasodilators. Small-conductance, apamin-sensitive K(Ca) channels may be activated by endothelium-derived hyperpolarizing factor. ATP-sensitive K+ (K(ATP)) channels are activated by pharmacological and endogenous vasodilators. Inward rectifier K+ (K(ir)) channels are activated by slight changes in extracellular K+ and may contribute to resting membrane potential. 3. Membrane potential and diameter are determined, in part, by the integrated activity of several K+ channels, which are regulated by multiple dilator and constrictor signals in vascular smooth muscle.

UI MeSH Term Description Entries
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015221 Potassium Channels Cell membrane glycoproteins that are selectively permeable to potassium ions. At least eight major groups of K channels exist and they are made up of dozens of different subunits. Ion Channels, Potassium,Ion Channel, Potassium,Potassium Channel,Potassium Ion Channels,Channel, Potassium,Channel, Potassium Ion,Channels, Potassium,Channels, Potassium Ion,Potassium Ion Channel

Related Publications

J E Brayden
September 1989, The American journal of physiology,
J E Brayden
December 2005, Circulation research,
J E Brayden
January 2017, Advances in pharmacology (San Diego, Calif.),
J E Brayden
August 2000, Journal of autonomic pharmacology,
J E Brayden
January 1987, Journal of cardiovascular pharmacology,
Copied contents to your clipboard!