Structure-activity relationships for thyroid hormone deiodination by mammalian type I iodothyronine deiodinases. 1997

N Toyoda, and E Kaptein, and M J Berry, and J W Harney, and P R Larsen, and T J Visser
Thyroid Division, Brigham and Women's Hospital, Boston, Massachusets, USA.

The bioactivity of thyroid hormone is determined to a large extent by the monodeiodination of the prohormone T4 by the hepatic selenoenzyme type I iodothyronine deiodinase (IDI), i.e. by outer ring deiodination (ORD) to the active hormone T3' or by inner ring deiodination (IRD) to the inactive metabolite rT3. IDI also catalyzes the IRD of T3 and the ORD of rT3' both to T2, as well as the deiodination of different iodothyronine sulfates, e.g. IRD of T3S and ORD of T2S. Previous studies have indicated important differences in catalytic specificity between dog IDI (dID1) and human ID1 (hID1), in particular with respect to the ORD of rT3. This study was done to investigate the relationship between structure and catalytic function of this enzyme by comparing the deiodination of T4, T3, rT3, T3S, and T2S by native dID1 and hID1 in liver microsomes as well as by recombinant wild-type, chimeric and mutated d/hID1 enzymes expressed in HEK293 cells. With both native and recombinant wild-type enzymes, the substrate specificity was T3S > T2S approximately rT3 approximately T4 > T3 for dID1, and rT3 > > T2S approximately T3S > T4 approximately T3 for hID1. Whereas ORD of T4 and of T4, T3, and T3S showed relatively little variation between the different d/hID1 constructs, large differences were found for the ORD of rT3 and T2S. Both reactions were favored by the presence of the amino acids G, E and, in particular, F, present in hID1 at positions 45, 46, and 65, instead of the dID1 residues N, G, and L, respectively. However, although ORD of rT3 was not affected by the presence (hID1) or absence (dID1) of the TGMTR(48-52) sequence, the ORD of T2S was markedly inhibited by the presence of this sequence. Therefore, we have identified structural elements in ID1 that have substrate-specific impacts on deiodination. Our results suggest the specific interaction of the mono-substituted inner ring of the substrates rT3 and T2S but not the disubstituted inner ring of T3, T3S, or T4, with the aromatic ring of F65 in Id1, perhaps by pi-pi interactions.

UI MeSH Term Description Entries
D007453 Iodide Peroxidase A hemeprotein that catalyzes the oxidation of the iodide radical to iodine with the subsequent iodination of many organic compounds, particularly proteins. EC 1.11.1.8. Iodinase,Iodothyronine 5'-Deiodinase,Iodothyronine Deiodinase,Iodotyrosine Deiodase,Thyroid Peroxidase,Thyroxine 5'-Deiodinase,Thyroxine 5'-Monodeiodinase,5'-Deiodinase,Deiodinase,Iodotyrosine Deiodinase,Monodeiodinase,Reverse Triiodothyronine 5'-Deiodinase,T4-5'-Deiodinase,T4-Monodeiodinase,Tetraiodothyronine 5'-Deiodinase,Thyroxine Converting Enzyme,Triiodothyronine Deiodinase,5' Deiodinase,5'-Deiodinase, Iodothyronine,5'-Deiodinase, Reverse Triiodothyronine,5'-Deiodinase, Tetraiodothyronine,5'-Deiodinase, Thyroxine,5'-Monodeiodinase, Thyroxine,Deiodase, Iodotyrosine,Deiodinase, Iodothyronine,Deiodinase, Iodotyrosine,Deiodinase, Triiodothyronine,Enzyme, Thyroxine Converting,Iodothyronine 5' Deiodinase,Peroxidase, Iodide,Peroxidase, Thyroid,Reverse Triiodothyronine 5' Deiodinase,T4 5' Deiodinase,T4 Monodeiodinase,Tetraiodothyronine 5' Deiodinase,Thyroxine 5' Deiodinase,Thyroxine 5' Monodeiodinase,Triiodothyronine 5'-Deiodinase, Reverse
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D013963 Thyroid Hormones Natural hormones secreted by the THYROID GLAND, such as THYROXINE, and their synthetic analogs. Thyroid Hormone,Hormone, Thyroid,Hormones, Thyroid

Related Publications

N Toyoda, and E Kaptein, and M J Berry, and J W Harney, and P R Larsen, and T J Visser
October 2005, Nihon rinsho. Japanese journal of clinical medicine,
N Toyoda, and E Kaptein, and M J Berry, and J W Harney, and P R Larsen, and T J Visser
February 2022, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
N Toyoda, and E Kaptein, and M J Berry, and J W Harney, and P R Larsen, and T J Visser
September 1991, Endocrinology,
N Toyoda, and E Kaptein, and M J Berry, and J W Harney, and P R Larsen, and T J Visser
October 2021, Endocrinology and metabolism (Seoul, Korea),
N Toyoda, and E Kaptein, and M J Berry, and J W Harney, and P R Larsen, and T J Visser
April 1994, Bailliere's clinical endocrinology and metabolism,
N Toyoda, and E Kaptein, and M J Berry, and J W Harney, and P R Larsen, and T J Visser
April 2011, Expert opinion on therapeutic targets,
N Toyoda, and E Kaptein, and M J Berry, and J W Harney, and P R Larsen, and T J Visser
October 2010, Current opinion in endocrinology, diabetes, and obesity,
N Toyoda, and E Kaptein, and M J Berry, and J W Harney, and P R Larsen, and T J Visser
January 1987, Archives of toxicology. Supplement. = Archiv fur Toxikologie. Supplement,
N Toyoda, and E Kaptein, and M J Berry, and J W Harney, and P R Larsen, and T J Visser
March 1984, Endocrinology,
N Toyoda, and E Kaptein, and M J Berry, and J W Harney, and P R Larsen, and T J Visser
July 2007, Arquivos brasileiros de endocrinologia e metabologia,
Copied contents to your clipboard!