Mathematical model of pacemaker activity in bursting neurons of snail, Helix pomatia. 1996

N M Berezetskaya, and V N Kharkyanen, and N I Kononenko
Division of Physics of Biological Systems, Institute of Physics, Kiev, Ukraine.

On the basis of experimental data we have developed a mathematical model of pacemaker activity in bursting neurons of snail Helix pomatia which includes a minimal model of membrane potential oscillation, spike-generating mechanism, voltage- and time-dependent inward calcium current, intracellular calcium ions, [Ca2+]in, their fast buffering and accumulation, stationary voltage-dependent [Ca2+]in-inhibited calcium current. A resulting model of bursting pacemaker activity reproduces all experimental phenomena which were mimicked on the minimal model for membrane potential oscillation including (a) the effect of polarizing current on bursting activity, (b) an increase of input resistance during depolarizing phase, (c) induced hyperpolarization, etc. This model demonstrates adaptation of bursting activity to both the polarizing current and changes in the stationary sodium or potassium conductances. The model also reproduces the behavior of the transmembrane ionic current at membrane potentials clamped in different phases of slow-wave development; the calculated current-voltage relationships of the model neuronal membrane using a slow ramp potential clamp demonstrate hysteresis properties. Relationships between the model of bursting activity and the properties if intact bursting neurons are discussed.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D009431 Neural Conduction The propagation of the NERVE IMPULSE along the nerve away from the site of an excitation stimulus. Nerve Conduction,Conduction, Nerve,Conduction, Neural,Conductions, Nerve,Conductions, Neural,Nerve Conductions,Neural Conductions
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D006372 Helix, Snails A genus of chiefly Eurasian and African land snails including the principal edible snails as well as several pests of cultivated plants. Helix (Snails),Snails Helix
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000252 Calcium-Transporting ATPases Cation-transporting proteins that utilize the energy of ATP hydrolysis for the transport of CALCIUM. They differ from CALCIUM CHANNELS which allow calcium to pass through a membrane without the use of energy. ATPase, Calcium,Adenosinetriphosphatase, Calcium,Ca(2+)-Transporting ATPase,Calcium ATPase,Calcium Adenosinetriphosphatase,Adenosine Triphosphatase, Calcium,Ca2+ ATPase,Calcium-ATPase,ATPase, Ca2+,ATPases, Calcium-Transporting,Calcium Adenosine Triphosphatase,Calcium Transporting ATPases,Triphosphatase, Calcium Adenosine
D000254 Sodium-Potassium-Exchanging ATPase An enzyme that catalyzes the active transport system of sodium and potassium ions across the cell wall. Sodium and potassium ions are closely coupled with membrane ATPase which undergoes phosphorylation and dephosphorylation, thereby providing energy for transport of these ions against concentration gradients. ATPase, Sodium, Potassium,Adenosinetriphosphatase, Sodium, Potassium,Na(+)-K(+)-Exchanging ATPase,Na(+)-K(+)-Transporting ATPase,Potassium Pump,Sodium Pump,Sodium, Potassium ATPase,Sodium, Potassium Adenosinetriphosphatase,Sodium-Potassium Pump,Adenosine Triphosphatase, Sodium, Potassium,Na(+) K(+)-Transporting ATPase,Sodium, Potassium Adenosine Triphosphatase,ATPase Sodium, Potassium,ATPase, Sodium-Potassium-Exchanging,Adenosinetriphosphatase Sodium, Potassium,Pump, Potassium,Pump, Sodium,Pump, Sodium-Potassium,Sodium Potassium Exchanging ATPase,Sodium Potassium Pump

Related Publications

N M Berezetskaya, and V N Kharkyanen, and N I Kononenko
November 1996, Journal of theoretical biology,
N M Berezetskaya, and V N Kharkyanen, and N I Kononenko
January 1992, Doklady Akademii nauk,
N M Berezetskaya, and V N Kharkyanen, and N I Kononenko
March 2013, Acta biologica Hungarica,
N M Berezetskaya, and V N Kharkyanen, and N I Kononenko
May 1992, Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology,
N M Berezetskaya, and V N Kharkyanen, and N I Kononenko
June 1986, Cellular and molecular neurobiology,
N M Berezetskaya, and V N Kharkyanen, and N I Kononenko
January 1972, Zhurnal evoliutsionnoi biokhimii i fiziologii,
N M Berezetskaya, and V N Kharkyanen, and N I Kononenko
January 1983, Neirofiziologiia = Neurophysiology,
N M Berezetskaya, and V N Kharkyanen, and N I Kononenko
December 1993, Pflugers Archiv : European journal of physiology,
N M Berezetskaya, and V N Kharkyanen, and N I Kononenko
January 1983, Neirofiziologiia = Neurophysiology,
N M Berezetskaya, and V N Kharkyanen, and N I Kononenko
December 1985, Journal of neurophysiology,
Copied contents to your clipboard!