Angiotensin II stimulates c-Jun NH2-terminal kinase in cultured cardiac myocytes of neonatal rats. 1997

S Kudoh, and I Komuro, and T Mizuno, and T Yamazaki, and Y Zou, and I Shiojima, and N Takekoshi, and Y Yazaki
Department of Medicine III, University of Tokyo, School of Medicine, Japan.

Many lines of evidence have suggested that angiotensin II (Ang II)plays an important role in cardiac hypertrophy. Ang II not only increases protein synthesis but also induces the reprogramming of gene expression in cultured cardiac myocytes. In the present study, to elucidate the mechanism by which Ang II regulates gene expression in cardiac myocytes, we examined whether Ang II activates c-Jun NH2-terminal kinase (JNK), which is a member of the mitogen-activated protein kinase family and activates the transcription factor, activator protein-1 (AP-1). The activity of JNK increased 5 minutes after the addition of Ang II, peaked at 20 minutes, and gradually decreased thereafter. Examination of the Ang II dose-response relation revealed detectable JNK activation at 10(-9) mol/L and maximal activation at 10(-6) mol/L. Ang II activated JNK through the AT1 receptor, and the activation was attenuated by the downregulation of protein kinase C or the chelation of intracellular Ca2+. Although the addition of either Ca2+ ionophore or phorbol ester resulted in little or no activation of JNK, simultaneous addition of both Ca2+ ionophore and phorbol ester markedly activated JNK. Slight expressions of the c-jun gene were observed in unstimulated cardiac myocytes, and Ang II increased expressions of the c-jun gene as well as the c-fos gene. Ang II increased transcription of the endothelin-1 gene through the AP-1 binding site. In conclusion, Ang II may activate JNK in cultured cardiac myocytes through an increase in intracellular Ca2+ and activation of protein kinase C, and the activated JNK may regulate gene expression by activating AP-1 during Ang II-induced cardiac hypertrophy.

UI MeSH Term Description Entries
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D011945 Receptors, Angiotensin Cell surface proteins that bind ANGIOTENSINS and trigger intracellular changes influencing the behavior of cells. Angiotensin Receptor,Angiotensin Receptors,Angiotensin II Receptor,Angiotensin III Receptor,Receptor, Angiotensin II,Receptor, Angiotensin III,Receptor, Angiotensin
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D000804 Angiotensin II An octapeptide that is a potent but labile vasoconstrictor. It is produced from angiotensin I after the removal of two amino acids at the C-terminal by ANGIOTENSIN CONVERTING ENZYME. The amino acid in position 5 varies in different species. To block VASOCONSTRICTION and HYPERTENSION effect of angiotensin II, patients are often treated with ACE INHIBITORS or with ANGIOTENSIN II TYPE 1 RECEPTOR BLOCKERS. Angiotensin II, Ile(5)-,Angiotensin II, Val(5)-,5-L-Isoleucine Angiotensin II,ANG-(1-8)Octapeptide,Angiotensin II, Isoleucine(5)-,Angiotensin II, Valine(5)-,Angiotensin-(1-8) Octapeptide,Isoleucine(5)-Angiotensin,Isoleucyl(5)-Angiotensin II,Valyl(5)-Angiotensin II,5 L Isoleucine Angiotensin II,Angiotensin II, 5-L-Isoleucine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals

Related Publications

S Kudoh, and I Komuro, and T Mizuno, and T Yamazaki, and Y Zou, and I Shiojima, and N Takekoshi, and Y Yazaki
July 1998, Circulation research,
S Kudoh, and I Komuro, and T Mizuno, and T Yamazaki, and Y Zou, and I Shiojima, and N Takekoshi, and Y Yazaki
January 1998, Endocrinology,
S Kudoh, and I Komuro, and T Mizuno, and T Yamazaki, and Y Zou, and I Shiojima, and N Takekoshi, and Y Yazaki
November 1995, Molecular and cellular biology,
S Kudoh, and I Komuro, and T Mizuno, and T Yamazaki, and Y Zou, and I Shiojima, and N Takekoshi, and Y Yazaki
November 1997, Circulation research,
S Kudoh, and I Komuro, and T Mizuno, and T Yamazaki, and Y Zou, and I Shiojima, and N Takekoshi, and Y Yazaki
June 2005, American journal of physiology. Renal physiology,
S Kudoh, and I Komuro, and T Mizuno, and T Yamazaki, and Y Zou, and I Shiojima, and N Takekoshi, and Y Yazaki
January 2008, Brain research bulletin,
S Kudoh, and I Komuro, and T Mizuno, and T Yamazaki, and Y Zou, and I Shiojima, and N Takekoshi, and Y Yazaki
October 1997, The Journal of biological chemistry,
S Kudoh, and I Komuro, and T Mizuno, and T Yamazaki, and Y Zou, and I Shiojima, and N Takekoshi, and Y Yazaki
September 2000, The Journal of biological chemistry,
S Kudoh, and I Komuro, and T Mizuno, and T Yamazaki, and Y Zou, and I Shiojima, and N Takekoshi, and Y Yazaki
November 2000, The Biochemical journal,
S Kudoh, and I Komuro, and T Mizuno, and T Yamazaki, and Y Zou, and I Shiojima, and N Takekoshi, and Y Yazaki
October 2000, Hypertension (Dallas, Tex. : 1979),
Copied contents to your clipboard!