Calcium/calmodulin-dependent kinase II phosphorylates Drosophila visual arrestin. 1997

E S Kahn, and H Matsumoto
Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City 73190, USA.

Light activation of rhodopsin in the Drosophila photoreceptor induces a G protein-coupled signaling cascade that results in the influx of Ca2+ into the photoreceptor cells. Immediately following light activation, phosphorylation of a photoreceptor-specific protein, phosrestin I, is detected. Strong sequence similarity to mammalian arrestin and electroretinograms of phosrestin mutants suggest that phosrestin I is involved in light inactivation. We are interested in identifying the protein kinase responsible for the phosphorylation of phosrestin I to link the transmembrane signaling to the light-adaptive response. Type II Ca2+/calmodulin-dependent kinase is one of the major classes of protein kinases that regulate cellular responses to transmembrane signals. We show here that partially purified phosrestin I kinase activity can be immunodepleted and immunodetected with antibodies to Ca2+/calmodulin-dependent kinase II and that the kinase activity exhibits regulatory properties that are unique to Ca2+/calmodulin-dependent kinase II such as Ca2+ independence after autophosphorylation and inhibition by synthetic peptides containing the Ca2+/calmodulin-dependent kinase II autoinhibitory domain. We also show that Ca2+/calmodulin-dependent kinase KII activity is present in Drosophila eye preparations. These results are consistent with our hypothesis that Ca2+/calmodulin-dependent kinase II phosphorylates phosrestin I. We suggest that Ca2+/calmodulin-dependent kinase II plays a regulatory role in Drosophila photoreceptor light adaptation.

UI MeSH Term Description Entries
D010750 Phosphoproteins Phosphoprotein
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D010770 Phosphotransferases A rather large group of enzymes comprising not only those transferring phosphate but also diphosphate, nucleotidyl residues, and others. These have also been subdivided according to the acceptor group. (From Enzyme Nomenclature, 1992) EC 2.7. Kinases,Phosphotransferase,Phosphotransferases, ATP,Transphosphorylase,Transphosphorylases,Kinase,ATP Phosphotransferases
D004330 Drosophila A genus of small, two-winged flies containing approximately 900 described species. These organisms are the most extensively studied of all genera from the standpoint of genetics and cytology. Fruit Fly, Drosophila,Drosophila Fruit Flies,Drosophila Fruit Fly,Drosophilas,Flies, Drosophila Fruit,Fly, Drosophila Fruit,Fruit Flies, Drosophila
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D005123 Eye The organ of sight constituting a pair of globular organs made up of a three-layered roughly spherical structure specialized for receiving and responding to light. Eyes
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000906 Antibodies Immunoglobulin molecules having a specific amino acid sequence by virtue of which they interact only with the ANTIGEN (or a very similar shape) that induced their synthesis in cells of the lymphoid series (especially PLASMA CELLS).
D017871 Calcium-Calmodulin-Dependent Protein Kinases A CALMODULIN-dependent enzyme that catalyzes the phosphorylation of proteins. This enzyme is also sometimes dependent on CALCIUM. A wide range of proteins can act as acceptor, including VIMENTIN; SYNAPSINS; GLYCOGEN SYNTHASE; MYOSIN LIGHT CHAINS; and the MICROTUBULE-ASSOCIATED PROTEINS. (From Enzyme Nomenclature, 1992, p277) Ca(2+)-Calmodulin-Dependent Protein Kinase,Calcium-Calmodulin-Dependent Protein Kinase,Calmodulin-Dependent Protein Kinase,Calmodulin-Dependent Protein Kinases,Multifunctional Calcium-Calmodulin-Dependent Protein Kinase,Restricted Calcium-Calmodulin-Dependent Protein Kinase,Calcium-Calmodulin-Dependent Protein Kinases, Multifunctional,Calcium-Calmodulin-Dependent Protein Kinases, Restricted,Calmodulin-Dependent Multiprotein Kinase,Calmodulin-Kinase,Cam-MPK,Multifunctional Calcium-Calmodulin-Dependent Protein Kinases,Restricted Calcium-Calmodulin-Dependent Protein Kinases,Calcium Calmodulin Dependent Protein Kinase,Calcium Calmodulin Dependent Protein Kinases, Multifunctional,Calcium Calmodulin Dependent Protein Kinases, Restricted,Calmodulin Dependent Multiprotein Kinase,Calmodulin Dependent Protein Kinase,Calmodulin Dependent Protein Kinases,Calmodulin Kinase,Cam MPK,Kinase, Calcium-Calmodulin-Dependent Protein,Kinase, Calmodulin-Dependent Protein,Multifunctional Calcium Calmodulin Dependent Protein Kinase,Multifunctional Calcium Calmodulin Dependent Protein Kinases,Multiprotein Kinase, Calmodulin-Dependent,Protein Kinase, Calcium-Calmodulin-Dependent,Protein Kinase, Calmodulin-Dependent,Protein Kinases, Calcium-Calmodulin-Dependent,Protein Kinases, Calmodulin-Dependent,Restricted Calcium Calmodulin Dependent Protein Kinase,Restricted Calcium Calmodulin Dependent Protein Kinases
D019390 Arrestins Regulatory proteins that down-regulate phosphorylated G-protein membrane receptors, including rod and cone photoreceptors and adrenergic receptors.

Related Publications

E S Kahn, and H Matsumoto
August 1996, Journal of photochemistry and photobiology. B, Biology,
E S Kahn, and H Matsumoto
March 1989, The Biochemical journal,
E S Kahn, and H Matsumoto
January 1990, Current topics in cellular regulation,
E S Kahn, and H Matsumoto
January 1992, Developmental neuroscience,
E S Kahn, and H Matsumoto
September 2004, The Journal of neuroscience : the official journal of the Society for Neuroscience,
E S Kahn, and H Matsumoto
November 2015, Molecular brain,
E S Kahn, and H Matsumoto
February 2004, The Biochemical journal,
E S Kahn, and H Matsumoto
September 2005, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!