A base substitution in the amino acid acceptor stem of tRNA(Lys) causes both misacylation and altered decoding. 1996

F T Pagel, and E J Murgola
Department of Molecular Genetics, University of Texas M.D., Anderson Cancer Center, Houston 77030, USA.

In 1984, our laboratory reported the characterization of the first misacylated tRNA missense suppressor, a mutant Escherichia coli lysine tRNA with a C70 to U base change in the amino acid acceptor stem. We suggested then that the suppressor tRNA, though still acylated to a large extent with lysine, is partially misacylated with alanine. The results reported in this article demonstrate that is the case both in vitro and in vivo. For the in vitro studies, the mutant tRNA species was isolated from the appropriate RPC-5 column fractions and shown to be acylatable with both lysine and alanine. For the in vivo demonstration, use was made of a temperature-sensitive alaS mutation, which results in decreasing acylation with Ala as the temperature is increased, resulting ultimately in lethality at 42 degrees C. The alaSts mutation was also used to demonstrate that the ability of the same missense suppressor, lysT(U70), to suppress a trpA frameshift mutation is not affected by the Ala-acylation deficiency. We conclude that the misacylation and altered decoding are two independent effects of the C70 to U mutation in tRNA(Lys). The influence of an alteration in the acceptor stem, which is in contact with the large (50S) ribosomal subunit, on decoding, which involves contact between the anticodon region of tRNA and the small (30S) ribosomal subunit, may occur intramolecularly, through the tRNA molecule. Alternatively, the U70 effect may be accomplished intermolecularly; for example, it may alter the interaction of tRNA with ribosomal RNA in the 50S subunit, which may then influence further interactions between the two subunits and between the 30S subunit and the anticodon region of the tRNA. Preliminary evidence suggesting some form of the latter explanation is presented. The influence of a single nucleotide on both tRNA identity and decoding may be related to the coevolution of tRNAs, aminoacyl-tRNA synthetases, and ribosomes.

UI MeSH Term Description Entries
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000215 Acylation The addition of an organic acid radical into a molecule.
D012357 RNA, Transfer, Lys A transfer RNA which is specific for carrying lysine to sites on the ribosomes in preparation for protein synthesis. Lysine-Specific tRNA,Transfer RNA, Lys,tRNALys,tRNA(Lys),Lys Transfer RNA,Lysine Specific tRNA,RNA, Lys Transfer,tRNA, Lysine-Specific
D016368 Frameshift Mutation A type of mutation in which a number of NUCLEOTIDES deleted from or inserted into a protein coding sequence is not divisible by three, thereby causing an alteration in the READING FRAMES of the entire coding sequence downstream of the mutation. These mutations may be induced by certain types of MUTAGENS or may occur spontaneously. Mutation, Frameshift,Frame Shift Mutation,Out-of-Frame Deletion,Out-of-Frame Insertion,Out-of-Frame Mutation,Deletion, Out-of-Frame,Deletions, Out-of-Frame,Frame Shift Mutations,Frameshift Mutations,Insertion, Out-of-Frame,Insertions, Out-of-Frame,Mutation, Frame Shift,Mutation, Out-of-Frame,Mutations, Frame Shift,Mutations, Frameshift,Mutations, Out-of-Frame,Out of Frame Deletion,Out of Frame Insertion,Out of Frame Mutation,Out-of-Frame Deletions,Out-of-Frame Insertions,Out-of-Frame Mutations

Related Publications

F T Pagel, and E J Murgola
September 1989, Biochemical and biophysical research communications,
F T Pagel, and E J Murgola
June 1988, FEBS letters,
F T Pagel, and E J Murgola
May 2007, The Plant journal : for cell and molecular biology,
F T Pagel, and E J Murgola
November 2020, The Journal of biological chemistry,
F T Pagel, and E J Murgola
May 1976, Biochemical and biophysical research communications,
Copied contents to your clipboard!