Comparisons of cross-modality integration in midbrain and cortex. 1996

B E Stein, and M T Wallace
Department of Neurobiology and Anatomy, Bowman Gray School of Medicine/Wake Forest University, Winston-Salem, NC 27157-1010, USA.

Multisensory neurons are abundant in the superior colliculus and anterior ectosylvian cortex of the cat. Despite the fact that these areas receive inputs from different regions, and are likely to be involved in different functional roles, there multisensory neurons have many fundamental similarities. They all have multiple receptive fields, one for each sensory input, and these receptive fields overlap one another. It is this spatial correspondence among receptive fields that determines the manner in which both populations of neurons integrate the inputs they receive from different sensory channels. Several principles of integration characterize both cortical and midbrain multisensory neurons, and these constancies in the fundamentals of cross-modality integration are likely to provide a basis for coherence at different levels of the neuraxis. Yet there are also obvious differences in these populations of multisensory neurons. Cortical receptive fields are significantly larger than those in the midbrain, have a lower incidence of suppressive surrounds, and exhibit less cross-modality inhibitory interactions than in the midbrain. Presumably, these differences reflect a greater emphasis on non-spatial aspects of cross-modality integration in cortex than is required by the orientation and localization functions mediated by the superior colliculus.

UI MeSH Term Description Entries
D008606 Mental Processes Conceptual functions or thinking in all its forms. Information Processing, Human,Human Information Processing
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D005072 Evoked Potentials, Auditory The electric response evoked in the CEREBRAL CORTEX by ACOUSTIC STIMULATION or stimulation of the AUDITORY PATHWAYS. Auditory Evoked Potentials,Auditory Evoked Response,Auditory Evoked Potential,Auditory Evoked Responses,Evoked Potential, Auditory,Evoked Response, Auditory,Evoked Responses, Auditory,Potentials, Auditory Evoked
D005073 Evoked Potentials, Somatosensory The electric response evoked in the CEREBRAL CORTEX by stimulation along AFFERENT PATHWAYS from PERIPHERAL NERVES to CEREBRUM. Somatosensory Evoked Potentials,Evoked Potential, Somatosensory,Somatosensory Evoked Potential
D005074 Evoked Potentials, Visual The electric response evoked in the cerebral cortex by visual stimulation or stimulation of the visual pathways. Visual Evoked Response,Evoked Potential, Visual,Evoked Response, Visual,Evoked Responses, Visual,Potential, Visual Evoked,Potentials, Visual Evoked,Response, Visual Evoked,Responses, Visual Evoked,Visual Evoked Potential,Visual Evoked Potentials,Visual Evoked Responses
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013477 Superior Colliculi The anterior pair of the quadrigeminal bodies which coordinate the general behavioral orienting responses to visual stimuli, such as whole-body turning, and reaching. Colliculus, Superior,Optic Lobe, Human,Optic Lobe, Mammalian,Optic Tectum,Anterior Colliculus,Superior Colliculus,Tectum, Optic,Colliculi, Superior,Colliculus, Anterior,Human Optic Lobe,Human Optic Lobes,Mammalian Optic Lobe,Mammalian Optic Lobes,Optic Lobes, Human,Optic Lobes, Mammalian,Optic Tectums,Tectums, Optic

Related Publications

B E Stein, and M T Wallace
September 2020, Hearing research,
B E Stein, and M T Wallace
January 2018, Journal of cognition,
B E Stein, and M T Wallace
May 1982, Behavioral and neural biology,
B E Stein, and M T Wallace
January 1995, Memory & cognition,
B E Stein, and M T Wallace
November 2013, Attention, perception & psychophysics,
B E Stein, and M T Wallace
July 1962, Proceedings of the Royal Society of Medicine,
B E Stein, and M T Wallace
January 2022, Handbook of clinical neurology,
B E Stein, and M T Wallace
November 1996, Experimental brain research,
B E Stein, and M T Wallace
September 1986, The American journal of occupational therapy : official publication of the American Occupational Therapy Association,
Copied contents to your clipboard!