Binaural interaction and the effects of stimulus intensity and repetition rate in human auditory brain-stem. 1996

Z D Jiang
Department of Physiology, University of Oxford, UK.

Binaural interaction (BI) components in brain-stem auditory evoked potential (BAEP) and their changes with stimulus intensity and repetition rate were examined in human adult. Seven BI components were identified, which occurred between the latency range of 5 and 11 ms and coincided consistently with the latency range of BAEP waves IV-VII. Waves DV and DVII, occurring at the downslopes of BAEP waves V and VII, respectively, were the two most prominent and reproducible BI components. Wave DVII existed consistently at high, moderate and, in most cases, low stimulus intensities, suggesting that this component is neurogenic although acoustic cross-talk may account for a part of its waveform at high stimulus intensities. The latencies of all BI components increased as a function of decreasing stimulus intensity, while the interpeak intervals, especially DV-DVII, were essentially constant at different intensity levels. The amplitudes of BI components decreased slightly with decreasing intensity. As click repetition rate increased, BI wave latencies and interpeak intervals increased slightly and amplitudes decreased slightly. When repetition rate increased to above 20/s, BI components became poorly differentiated. Lower repetition rates, e.g. 10/s, are therefore preferred for routine derivation of the BI. The changes in the latency and amplitude of BI components with stimulus intensity and repetition rate were associated or concomitant with those of the corresponding BAEP components in monaural and binaural potentials. In view of the concomitant relationship between BI and BAEP latency, we designate BI components in association with the corresponding BAEP components.

UI MeSH Term Description Entries
D007206 Individuality Those psychological characteristics which differentiate individuals from one another. Individual Differences,Difference, Individual,Differences, Individual,Individual Difference
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D004423 Ear The hearing and equilibrium system of the body. It consists of three parts: the EXTERNAL EAR, the MIDDLE EAR, and the INNER EAR. Sound waves are transmitted through this organ where vibration is transduced to nerve signals that pass through the ACOUSTIC NERVE to the CENTRAL NERVOUS SYSTEM. The inner ear also contains the vestibular organ that maintains equilibrium by transducing signals to the VESTIBULAR NERVE. Vestibulocochlear System,Vestibulocochlear Apparatus,Apparatus, Vestibulocochlear,Ears,System, Vestibulocochlear
D005260 Female Females
D006309 Hearing The ability or act of sensing and transducing ACOUSTIC STIMULATION to the CENTRAL NERVOUS SYSTEM. It is also called audition. Audition
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000161 Acoustic Stimulation Use of sound to elicit a response in the nervous system. Auditory Stimulation,Stimulation, Acoustic,Stimulation, Auditory
D000293 Adolescent A person 13 to 18 years of age. Adolescence,Youth,Adolescents,Adolescents, Female,Adolescents, Male,Teenagers,Teens,Adolescent, Female,Adolescent, Male,Female Adolescent,Female Adolescents,Male Adolescent,Male Adolescents,Teen,Teenager,Youths
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults

Related Publications

Z D Jiang
January 1983, The American journal of otology,
Z D Jiang
March 1986, Electroencephalography and clinical neurophysiology,
Z D Jiang
January 1985, Electroencephalography and clinical neurophysiology,
Z D Jiang
January 1990, Electroencephalography and clinical neurophysiology,
Copied contents to your clipboard!