Application of differential display RT-PCR to the analysis of gene expression in a plant-fungus interaction. 1996

E P Benito, and T Prins, and J A van Kan
Wageningen Agricultural University, Department of Phytopathology, Netherlands.

Establishment of a plant-pathogen interaction involves differential gene expression in both organisms. In order to isolate Botrytis cinerea genes whose expression is induced during its interaction with tomato, a comparative analysis of the expression pattern of the fungus in planta with its expression pattern during in vitro culture was performed by differential display of mRNA (DDRT-PCR). Discrimination of fungal genes induced in planta from plant defense genes induced in response to the pathogen was attempted by including in this comparative analysis the expression patterns of healthy tomato leaves and of tomato leaves infected with two different pathogens, either Rhytophthora infestans or tobacco necrosis virus (TNV). Using a limited set of primer combinations, three B. cinerea cDNA fragments, ddB-2, ddB-5 and ddB-47, were isolated representing fungal genes whose expression is enhanced in planta. Northern blot analysis showed that the transcripts detected with the cDNA clones ddB-2 and ddB-5 accumulated at detectable levels only at late time points during the interaction. The cDNA clone ddB-47 detected two different sizes of transcripts displaying distinct, transient expression patterns during the interaction. Sequence analysis and database searches revealed no significant homology to any known sequence. These results show that the differential display procedure possesses enough sensitivity to be applied to the detection of fungal genes induced during a plant-pathogen interaction. Additionally, four cDNA fragments were isolated representing tomato genes induced in response to the infection caused by B. cinerea, but not by P. infestans.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D003904 Mitosporic Fungi A large and heterogenous group of fungi whose common characteristic is the absence of a sexual state. Many of the pathogenic fungi in humans belong to this group. Deuteromycetes,Deuteromycota,Fungi imperfecti,Fungi, Mitosporic,Hyphomycetes,Deuteromycete,Deuteromycotas,Fungi imperfectus,Fungus, Mitosporic,Hyphomycete,Mitosporic Fungus,imperfectus, Fungi
D004271 DNA, Fungal Deoxyribonucleic acid that makes up the genetic material of fungi. Fungal DNA
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012680 Sensitivity and Specificity Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed) Specificity,Sensitivity,Specificity and Sensitivity
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain

Related Publications

E P Benito, and T Prins, and J A van Kan
January 1999, The Journal of eukaryotic microbiology,
E P Benito, and T Prins, and J A van Kan
September 1995, The American journal of physiology,
E P Benito, and T Prins, and J A van Kan
December 2001, Gene,
E P Benito, and T Prins, and J A van Kan
January 2000, Methods in molecular biology (Clifton, N.J.),
E P Benito, and T Prins, and J A van Kan
November 2001, Reproduction (Cambridge, England),
E P Benito, and T Prins, and J A van Kan
January 1999, Methods in molecular medicine,
E P Benito, and T Prins, and J A van Kan
June 1999, Zhonghua yi xue za zhi,
E P Benito, and T Prins, and J A van Kan
January 2008, Molecular and cellular endocrinology,
Copied contents to your clipboard!