Tissue kinetics in mouse tongue mucosa during daily fractionated radiotherapy. 1996

W Dörr, and H Emmendörfer, and M Weber-Frisch
Klinik und Poliklinik für Strahlentherapie, Universitätsklinikum Carl Gustav Carus, Dresden, Germany. DOERR@RCS.URZ.TUDRESDEN.DE

The purpose of the present investigation was to quantify cell flux between the distinct layers of the epithelial lining of the ventral surface of mouse tongue during daily fractionated radiotherapy. A fraction of DNA-synthesizing cells in control epithelium, or at various days through a course of daily fractionated radiotherapy with 3 or 4 Gy per day, was labelled with [3H]dT or BrdUrd, respectively. The labelling indices (LI) in the different epithelial layers were defined histologically after autoradiography, or immunohistochemistry, at intervals between 1 and 10 days after label administration. In tongue epithelium of untreated mice, the minimum residence time of cells in the germinal layer is 2-3 days. Migration through the functional layers requires an additional 2-3 days before labelled cells are observed in the most superficial layer of nucleated cells. A plateau in LI is observed for several days post-labelling in control epithelium, indicating an equilibrium between loss and proliferation of labelled cells. During fractionated radiotherapy, the minimum time from division to occurrence of labelled cells in the stratum lucidum is less than 2 days, and hence significantly shorter than in control epithelium. In contrast to untreated epithelium, no plateau in the germinal layer LI is seen, indicating that frequently both labelled daughters from dividing labelled cells are being lost from this compartment. In conclusion, the present data support a recently described model of radiation-induced accelerated repopulation in squamous epithelia, which postulates that the majority of damaged cells undergoes abortive' divisions resulting in two differentiating daughters.

UI MeSH Term Description Entries
D008809 Mice, Inbred C3H An inbred strain of mouse that is used as a general purpose strain in a wide variety of RESEARCH areas including CANCER; INFECTIOUS DISEASES; sensorineural, and cardiovascular biology research. Mice, C3H,Mouse, C3H,Mouse, Inbred C3H,C3H Mice,C3H Mice, Inbred,C3H Mouse,C3H Mouse, Inbred,Inbred C3H Mice,Inbred C3H Mouse
D009061 Mouth Mucosa Lining of the ORAL CAVITY, including mucosa on the GUMS; the PALATE; the LIP; the CHEEK; floor of the mouth; and other structures. The mucosa is generally a nonkeratinized stratified squamous EPITHELIUM covering muscle, bone, or glands but can show varying degree of keratinization at specific locations. Buccal Mucosa,Oral Mucosa,Mucosa, Mouth,Mucosa, Oral
D001973 Bromodeoxyuridine A nucleoside that substitutes for thymidine in DNA and thus acts as an antimetabolite. It causes breaks in chromosomes and has been proposed as an antiviral and antineoplastic agent. It has been given orphan drug status for use in the treatment of primary brain tumors. BUdR,BrdU,Bromouracil Deoxyriboside,Broxuridine,5-Bromo-2'-deoxyuridine,5-Bromodeoxyuridine,NSC-38297,5 Bromo 2' deoxyuridine,5 Bromodeoxyuridine,Deoxyriboside, Bromouracil
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014059 Tongue A muscular organ in the mouth that is covered with pink tissue called mucosa, tiny bumps called papillae, and thousands of taste buds. The tongue is anchored to the mouth and is vital for chewing, swallowing, and for speech. Tongues
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

W Dörr, and H Emmendörfer, and M Weber-Frisch
September 2015, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology,
W Dörr, and H Emmendörfer, and M Weber-Frisch
May 1995, International journal of radiation biology,
W Dörr, and H Emmendörfer, and M Weber-Frisch
February 2004, International journal of radiation oncology, biology, physics,
W Dörr, and H Emmendörfer, and M Weber-Frisch
November 1985, International journal of radiation oncology, biology, physics,
W Dörr, and H Emmendörfer, and M Weber-Frisch
January 1984, International journal of radiation oncology, biology, physics,
W Dörr, and H Emmendörfer, and M Weber-Frisch
January 1992, BJR supplement,
W Dörr, and H Emmendörfer, and M Weber-Frisch
May 1968, European journal of cancer,
W Dörr, and H Emmendörfer, and M Weber-Frisch
March 1990, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology,
W Dörr, and H Emmendörfer, and M Weber-Frisch
August 1995, International journal of radiation biology,
W Dörr, and H Emmendörfer, and M Weber-Frisch
December 1995, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology,
Copied contents to your clipboard!