Increased 5-lipoxygenase metabolism in the lungs of human subjects exposed to ozone. 1996

M J Coffey, and C S Wheeler, and K B Gross, and W L Eschenbacher, and P H Sporn, and M Peters-Golden
Department of Internal Medicine, Taubman Center, University of Michigan, Ann Arbor, USA.

The environmental pollutant ozone, at sufficiently high levels, is known to induce pulmonary inflammation with resultant airway obstruction in normal subjects. Eicosanoids comprise one group of mediators released from alveolar macrophages which are involved in the pathogenesis of inflammatory lung diseases. We compared the effects of 2-h exposures to 0.4 ppm ozone and filtered air on pulmonary function and eicosanoid levels in bronchoalveolar lavage fluid in 11 normal healthy volunteers. Subjects were exposed to a 6-fold increase in minute ventilation using an adjusted work load on a cycle ergometer. All subjects complained of cough and dyspnea, and demonstrated increased airway obstruction, and increased specific airway resistance following ozone exposure as compared to air exposure. Bronchoalveolar lavage cell count demonstrated a 9-fold increase in the number of neutrophils with a lesser reduction in the number of alveolar macrophages following ozone exposure. Notably, bronchoalveolar lavage fluid leukotriene (LT) C4 (8-fold) and to a lesser extent LTB4 (1.5-fold) levels were higher following ozone exposure compared to air control, with no change in prostaglandins. In a subset of four subjects, alveolar macrophage arachidonic acid metabolism was studied in vitro following separate in vivo exposures to both ozone and air. Alveolar macrophages obtained following ozone exposure released more 5-lipoxygenase (1.5-fold) metabolites, with no change in cyclooxygenase metabolites, than did cells obtained following air exposure. These observations document activation of the 5-lipoxygenase pathway in the lung following ozone exposure, and suggest that alveolar macrophages may participate in the generation of LT, whose actions promote airway inflammation and obstruction.

UI MeSH Term Description Entries
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D010126 Ozone The unstable triatomic form of oxygen, O3. It is a powerful oxidant that is produced for various chemical and industrial uses. Its production is also catalyzed in the ATMOSPHERE by ULTRAVIOLET RAY irradiation of oxygen or other ozone precursors such as VOLATILE ORGANIC COMPOUNDS and NITROGEN OXIDES. About 90% of the ozone in the atmosphere exists in the stratosphere (STRATOSPHERIC OZONE). Ground Level Ozone,Low Level Ozone,Tropospheric Ozone,Level Ozone, Ground,Level Ozone, Low,Ozone, Ground Level,Ozone, Low Level,Ozone, Tropospheric
D012129 Respiratory Function Tests Measurement of the various processes involved in the act of respiration: inspiration, expiration, oxygen and carbon dioxide exchange, lung volume and compliance, etc. Lung Function Tests,Pulmonary Function Tests,Function Test, Pulmonary,Function Tests, Pulmonary,Pulmonary Function Test,Test, Pulmonary Function,Tests, Pulmonary Function,Function Test, Lung,Function Test, Respiratory,Function Tests, Lung,Function Tests, Respiratory,Lung Function Test,Respiratory Function Test,Test, Lung Function,Test, Respiratory Function,Tests, Lung Function,Tests, Respiratory Function
D001992 Bronchoalveolar Lavage Fluid Washing liquid obtained from irrigation of the lung, including the BRONCHI and the PULMONARY ALVEOLI. It is generally used to assess biochemical, inflammatory, or infection status of the lung. Alveolar Lavage Fluid,Bronchial Lavage Fluid,Lung Lavage Fluid,Bronchial Alveolar Lavage Fluid,Lavage Fluid, Bronchial,Lavage Fluid, Lung,Pulmonary Lavage Fluid,Alveolar Lavage Fluids,Bronchial Lavage Fluids,Bronchoalveolar Lavage Fluids,Lavage Fluid, Alveolar,Lavage Fluid, Bronchoalveolar,Lavage Fluid, Pulmonary,Lavage Fluids, Alveolar,Lavage Fluids, Bronchial,Lavage Fluids, Bronchoalveolar,Lavage Fluids, Lung,Lavage Fluids, Pulmonary,Lung Lavage Fluids,Pulmonary Lavage Fluids
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000293 Adolescent A person 13 to 18 years of age. Adolescence,Youth,Adolescents,Adolescents, Female,Adolescents, Male,Teenagers,Teens,Adolescent, Female,Adolescent, Male,Female Adolescent,Female Adolescents,Male Adolescent,Male Adolescents,Teen,Teenager,Youths
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D001094 Arachidonate 5-Lipoxygenase An enzyme that catalyzes the oxidation of arachidonic acid to yield 5-hydroperoxyarachidonate (5-HPETE) which is rapidly converted by a peroxidase to 5-hydroxy-6,8,11,14-eicosatetraenoate (5-HETE). The 5-hydroperoxides are preferentially formed in leukocytes. 5-Lipoxygenase,Arachidonic Acid 5-Lipoxygenase,LTA4 Synthase,Leukotriene A Synthase,Leukotriene A4 Synthase,Leukotriene A4 Synthetase,5 Lipoxygenase,5-Lipoxygenase, Arachidonate,5-Lipoxygenase, Arachidonic Acid,Arachidonate 5 Lipoxygenase,Arachidonic Acid 5 Lipoxygenase,Synthase, LTA4,Synthase, Leukotriene A,Synthase, Leukotriene A4,Synthetase, Leukotriene A4
D015777 Eicosanoids A class of compounds named after and generally derived from C20 fatty acids (EICOSANOIC ACIDS) that includes PROSTAGLANDINS; LEUKOTRIENES; THROMBOXANES, and HYDROXYEICOSATETRAENOIC ACIDS. They have hormone-like effects mediated by specialized receptors (RECEPTORS, EICOSANOID). Eicosanoid,Icosanoid,Icosanoids

Related Publications

M J Coffey, and C S Wheeler, and K B Gross, and W L Eschenbacher, and P H Sporn, and M Peters-Golden
December 1972, Archives of environmental health,
M J Coffey, and C S Wheeler, and K B Gross, and W L Eschenbacher, and P H Sporn, and M Peters-Golden
June 1987, Archives of biochemistry and biophysics,
M J Coffey, and C S Wheeler, and K B Gross, and W L Eschenbacher, and P H Sporn, and M Peters-Golden
July 1996, Journal of immunology (Baltimore, Md. : 1950),
M J Coffey, and C S Wheeler, and K B Gross, and W L Eschenbacher, and P H Sporn, and M Peters-Golden
June 1978, Environmental research,
M J Coffey, and C S Wheeler, and K B Gross, and W L Eschenbacher, and P H Sporn, and M Peters-Golden
February 1976, Experimental and molecular pathology,
M J Coffey, and C S Wheeler, and K B Gross, and W L Eschenbacher, and P H Sporn, and M Peters-Golden
July 1994, American journal of respiratory cell and molecular biology,
M J Coffey, and C S Wheeler, and K B Gross, and W L Eschenbacher, and P H Sporn, and M Peters-Golden
January 1974, La Medicina del lavoro,
M J Coffey, and C S Wheeler, and K B Gross, and W L Eschenbacher, and P H Sporn, and M Peters-Golden
April 1981, Toxicology letters,
M J Coffey, and C S Wheeler, and K B Gross, and W L Eschenbacher, and P H Sporn, and M Peters-Golden
July 1961, Terapevticheskii arkhiv,
M J Coffey, and C S Wheeler, and K B Gross, and W L Eschenbacher, and P H Sporn, and M Peters-Golden
April 1997, The American journal of physiology,
Copied contents to your clipboard!