MIC and time-kill studies of antipneumococcal activity of GV 118819X (sanfetrinem) compared with those of other agents. 1997

S K Spangler, and M R Jacobs, and P C Appelbaum
Department of Pathology (Clinical Microbiology), Hershey Medical Center, Hershey, Pennsylvania 17033, USA.

Agar dilution MIC methodology was used to test the activities of GV 118819X (sanfetrinem), ampicillin, amoxicillin, amoxicillin-clavulanate, cefpodoxime, loracarbef, levofloxacin, clarithromycin, ceftriaxone, imipenem, and vancomycin against 53 penicillin-susceptible, 84 penicillin-intermediate and 74 penicillin-resistant pneumococci isolated in the United States. GV 118819X was the most active oral beta-lactam, with MIC at which 50% of the isolates were inhibited (MIC50)/MIC90 values of 0.008/0.03, 0.06/0.5, and 0.5/1.0 micrograms/ml against penicillin-susceptible, -intermediate, and -resistant stains, respectively. Amoxicillin and amoxicillin in the presence of clavulanate (2:1) were the second most-active oral beta-lactams, followed by ampicillin and cefpodoxime; loracarbef was not active against penicillin-intermediate and -resistant strains. Clarithromycin was most active against penicillin-susceptible strains but was less active against intermediate and resistant stains. All pneumococcal stains were inhibited by ceftriaxone and imipenem at MICs of < or = 4.0 and < or = 1.0 micrograms/ml, respectively. The activities of levofloxacin and vancomycin were unaffected by penicillin susceptibility. Time-kill studies of three penicillin-susceptible, three penicillin-intermediate, and three penicillin-resistant pneumococci showed that all compounds, at the broth microdilution MIC, yielded 99.9% killing of all strains after 24 h. Kinetic patterns of all oral beta-lactams, ceftriaxone, and vancomycin were similar relative to the MIC, with 90% killing of all strains first observed after 12 h. However, killing by amoxicillin-clavulanate, imipenem, and levofloxacin was slightly faster and that by clarithromycin was slower than that by the above-described drugs. At 2 x the MIC, more strains were killed earlier than was the case at the MIC, but the pattern seen at the MIC prevailed. When MICs and kill kinetics were combined, sanfetrinem was the most active oral antipneumococcal agent in this study.

UI MeSH Term Description Entries
D007769 Lactams Cyclic AMIDES formed from aminocarboxylic acids by the elimination of water. Lactims are the enol forms of lactams. Lactam,Lactim,Lactims
D010403 Penicillin Resistance Nonsusceptibility of an organism to the action of penicillins. Penicillin Resistances,Resistance, Penicillin,Resistances, Penicillin
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D013296 Streptococcus pneumoniae A gram-positive organism found in the upper respiratory tract, inflammatory exudates, and various body fluids of normal and/or diseased humans and, rarely, domestic animals. Diplococcus pneumoniae,Pneumococcus
D015169 Colony Count, Microbial Enumeration by direct count of viable, isolated bacterial, archaeal, or fungal CELLS or SPORES capable of growth on solid CULTURE MEDIA. The method is used routinely by environmental microbiologists for quantifying organisms in AIR; FOOD; and WATER; by clinicians for measuring patients' microbial load; and in antimicrobial drug testing. Agar Dilution Count,Colony-Forming Units Assay, Microbial,Fungal Count,Pour Plate Count,Spore Count,Spread Plate Count,Streak Plate Count,Colony Forming Units Assay, Microbial,Colony Forming Units Assays, Microbial,Agar Dilution Counts,Colony Counts, Microbial,Count, Agar Dilution,Count, Fungal,Count, Microbial Colony,Count, Pour Plate,Count, Spore,Count, Spread Plate,Count, Streak Plate,Counts, Agar Dilution,Counts, Fungal,Counts, Microbial Colony,Counts, Pour Plate,Counts, Spore,Counts, Spread Plate,Counts, Streak Plate,Dilution Count, Agar,Dilution Counts, Agar,Fungal Counts,Microbial Colony Count,Microbial Colony Counts,Pour Plate Counts,Spore Counts,Spread Plate Counts,Streak Plate Counts

Related Publications

S K Spangler, and M R Jacobs, and P C Appelbaum
September 1999, The Journal of antimicrobial chemotherapy,
S K Spangler, and M R Jacobs, and P C Appelbaum
May 1998, Antimicrobial agents and chemotherapy,
S K Spangler, and M R Jacobs, and P C Appelbaum
April 2003, Antimicrobial agents and chemotherapy,
S K Spangler, and M R Jacobs, and P C Appelbaum
July 2000, Antimicrobial agents and chemotherapy,
S K Spangler, and M R Jacobs, and P C Appelbaum
January 2002, Antimicrobial agents and chemotherapy,
S K Spangler, and M R Jacobs, and P C Appelbaum
January 2002, Antimicrobial agents and chemotherapy,
S K Spangler, and M R Jacobs, and P C Appelbaum
October 2004, Antimicrobial agents and chemotherapy,
S K Spangler, and M R Jacobs, and P C Appelbaum
December 2005, Antimicrobial agents and chemotherapy,
S K Spangler, and M R Jacobs, and P C Appelbaum
February 2000, Antimicrobial agents and chemotherapy,
S K Spangler, and M R Jacobs, and P C Appelbaum
June 2006, Antimicrobial agents and chemotherapy,
Copied contents to your clipboard!