Effects of tacrolimus (FK506) on human insulin gene expression, insulin mRNA levels, and insulin secretion in HIT-T15 cells. 1996

J B Redmon, and L K Olson, and M B Armstrong, and M J Greene, and R P Robertson
Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, University of Minnesota, Minneapolis 55455, USA. Redmo001@maroon.tc.umn.edu.

FK506 (tacrolimus) is an immunosuppressive drug which interrupts Ca2+-calmodulin-calcineurin signaling pathways in T lymphocytes, thereby blocking antigen activation of T cell early activation genes. Regulation of insulin gene expression in the beta cell may also involve Ca2+-signaling pathways and FK506 has been associated with insulin-requiring diabetes mellitus during clinical use. The purpose of this study was to characterize the effects of FK506 on human insulin gene transcription, insulin mRNA levels, and insulin secretion using as a model the HIT-T15 beta cell line. FK506 had no acute effect on insulin secretion in the HIT cell, but caused a reversible time- and dose-dependent (10(-9)-10(-6) M) decrease in HIT cell insulin secretion. Decreased insulin secretion in the presence of FK506 was also accompanied by a dose-dependent decrease in HIT cell insulin content, insulin mRNA levels, and expression of a human insulin promoter-chloramphenicol acetyl transferase (CAT) reporter gene. FK506 decreased HIT cell expression of the human insulin promoter-CAT reporter gene by 40% in the presence of both low (0.4 mM) at high (20 mM) glucose concentrations. Western blot analysis of HIT cell proteins gave evidence for the presence of calcineurin in the HIT cell. These findings suggest that FK506 may have direct effects to reversibly inhibit insulin gene transcription, leading to a decline in insulin mRNA levels, insulin synthesis, and ultimately insulin secretion.

UI MeSH Term Description Entries
D007166 Immunosuppressive Agents Agents that suppress immune function by one of several mechanisms of action. Classical cytotoxic immunosuppressants act by inhibiting DNA synthesis. Others may act through activation of T-CELLS or by inhibiting the activation of HELPER CELLS. While immunosuppression has been brought about in the past primarily to prevent rejection of transplanted organs, new applications involving mediation of the effects of INTERLEUKINS and other CYTOKINES are emerging. Immunosuppressant,Immunosuppressive Agent,Immunosuppressants,Agent, Immunosuppressive,Agents, Immunosuppressive
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007515 Islets of Langerhans Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN. Islands of Langerhans,Islet Cells,Nesidioblasts,Pancreas, Endocrine,Pancreatic Islets,Cell, Islet,Cells, Islet,Endocrine Pancreas,Islet Cell,Islet, Pancreatic,Islets, Pancreatic,Langerhans Islands,Langerhans Islets,Nesidioblast,Pancreatic Islet
D010749 Phosphoprotein Phosphatases A group of enzymes removing the SERINE- or THREONINE-bound phosphate groups from a wide range of phosphoproteins, including a number of enzymes which have been phosphorylated under the action of a kinase. (Enzyme Nomenclature, 1992) Phosphoprotein Phosphatase,Phosphoprotein Phosphohydrolase,Protein Phosphatase,Protein Phosphatases,Casein Phosphatase,Ecto-Phosphoprotein Phosphatase,Nuclear Protein Phosphatase,Phosphohistone Phosphatase,Phosphoprotein Phosphatase-2C,Phosphoseryl-Protein Phosphatase,Protein Phosphatase C,Protein Phosphatase C-I,Protein Phosphatase C-II,Protein Phosphatase H-II,Protein-Serine-Threonine Phosphatase,Protein-Threonine Phosphatase,Serine-Threonine Phosphatase,Threonine Phosphatase,Ecto Phosphoprotein Phosphatase,Phosphatase C, Protein,Phosphatase C-I, Protein,Phosphatase C-II, Protein,Phosphatase H-II, Protein,Phosphatase, Casein,Phosphatase, Ecto-Phosphoprotein,Phosphatase, Nuclear Protein,Phosphatase, Phosphohistone,Phosphatase, Phosphoprotein,Phosphatase, Phosphoseryl-Protein,Phosphatase, Protein,Phosphatase, Protein-Serine-Threonine,Phosphatase, Protein-Threonine,Phosphatase, Serine-Threonine,Phosphatase, Threonine,Phosphatase-2C, Phosphoprotein,Phosphatases, Phosphoprotein,Phosphatases, Protein,Phosphohydrolase, Phosphoprotein,Phosphoprotein Phosphatase 2C,Phosphoseryl Protein Phosphatase,Protein Phosphatase C I,Protein Phosphatase C II,Protein Phosphatase H II,Protein Phosphatase, Nuclear,Protein Serine Threonine Phosphatase,Protein Threonine Phosphatase,Serine Threonine Phosphatase
D002148 Calmodulin-Binding Proteins Proteins which bind calmodulin. They are found in many tissues and have a variety of functions including F-actin cross-linking properties, inhibition of cyclic nucleotide phosphodiesterase and calcium and magnesium ATPases. Caldesmon,Calspectin,CaM-BP(80),Caldesmon (77),Calmodulin Binding Proteins,Proteins, Calmodulin-Binding
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000078790 Insulin Secretion Production and release of insulin from PANCREATIC BETA CELLS that primarily occurs in response to elevated BLOOD GLUCOSE levels. Secretion, Insulin
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

J B Redmon, and L K Olson, and M B Armstrong, and M J Greene, and R P Robertson
June 1994, Diabetologia,
J B Redmon, and L K Olson, and M B Armstrong, and M J Greene, and R P Robertson
March 2002, Life sciences,
J B Redmon, and L K Olson, and M B Armstrong, and M J Greene, and R P Robertson
February 2005, Biochimica et biophysica acta,
J B Redmon, and L K Olson, and M B Armstrong, and M J Greene, and R P Robertson
October 2008, Pancreas,
J B Redmon, and L K Olson, and M B Armstrong, and M J Greene, and R P Robertson
February 2002, Transplantation,
J B Redmon, and L K Olson, and M B Armstrong, and M J Greene, and R P Robertson
August 1990, The Biochemical journal,
J B Redmon, and L K Olson, and M B Armstrong, and M J Greene, and R P Robertson
September 2000, JOP : Journal of the pancreas,
J B Redmon, and L K Olson, and M B Armstrong, and M J Greene, and R P Robertson
December 1998, Annals of the New York Academy of Sciences,
J B Redmon, and L K Olson, and M B Armstrong, and M J Greene, and R P Robertson
July 2010, Journal of pediatric endocrinology & metabolism : JPEM,
J B Redmon, and L K Olson, and M B Armstrong, and M J Greene, and R P Robertson
December 1999, Diabetologia,
Copied contents to your clipboard!