Microtubule treadmilling in vivo. 1997

V I Rodionov, and G G Borisy
Laboratory of Molecular Biology, University of Wisconsin, Madison, WI 53706, USA. ggborisy@facstaf.wisc.edu

In vivo, cytoplasmic microtubules are nucleated and anchored by their minus ends at the centrosome and are believed to turn over by a mechanism termed dynamic instability: depolymerization and repolymerization at their plus ends. In cytoplasmic fragments of fish melanophores, microtubules were shown to detach from their nucleation site and depolymerize from their minus ends. Free microtubules moved toward the periphery by treadmilling-growth at one end and shortening from the opposite end. Frequent release from nucleation sites may be a general property of centrosomes and permit a minus-end mechanism of microtubule turnover and treadmilling.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008547 Melanophores Chromatophores (large pigment cells of fish, amphibia, reptiles and many invertebrates) which contain melanin. Short term color changes are brought about by an active redistribution of the melanophores pigment containing organelles (MELANOSOMES). Mammals do not have melanophores; however they have retained smaller pigment cells known as MELANOCYTES. Melanophore
D008870 Microtubules Slender, cylindrical filaments found in the cytoskeleton of plant and animal cells. They are composed of the protein TUBULIN and are influenced by TUBULIN MODULATORS. Microtubule
D009068 Movement The act, process, or result of passing from one place or position to another. It differs from LOCOMOTION in that locomotion is restricted to the passing of the whole body from one place to another, while movement encompasses both locomotion but also a change of the position of the whole body or any of its parts. Movement may be used with reference to humans, vertebrate and invertebrate animals, and microorganisms. Differentiate also from MOTOR ACTIVITY, movement associated with behavior. Movements
D010860 Pigments, Biological Any normal or abnormal coloring matter in PLANTS; ANIMALS or micro-organisms. Biological Pigments
D011108 Polymers Compounds formed by the joining of smaller, usually repeating, units linked by covalent bonds. These compounds often form large macromolecules (e.g., BIOPOLYMERS; PLASTICS). Polymer
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D005399 Fishes A group of cold-blooded, aquatic vertebrates having gills, fins, a cartilaginous or bony endoskeleton, and elongated bodies covered with scales.

Related Publications

V I Rodionov, and G G Borisy
June 1997, Current biology : CB,
V I Rodionov, and G G Borisy
June 2003, Science (New York, N.Y.),
V I Rodionov, and G G Borisy
October 1998, BioEssays : news and reviews in molecular, cellular and developmental biology,
V I Rodionov, and G G Borisy
March 1981, Proceedings of the National Academy of Sciences of the United States of America,
V I Rodionov, and G G Borisy
November 1985, The Journal of cell biology,
V I Rodionov, and G G Borisy
April 1987, The Journal of cell biology,
V I Rodionov, and G G Borisy
December 1983, Journal of molecular biology,
Copied contents to your clipboard!