Tethering human immunodeficiency virus type 1 preintegration complexes to target DNA promotes integration at nearby sites. 1997

F D Bushman, and M D Miller
Infectious Disease Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA.

Integration of retroviral cDNA in vivo is normally not sequence specific with respect to the integration target DNA. We have been investigating methods for directing the integration of retroviral DNA to predetermined sites, with the dual goal of understanding potential mechanisms governing normal site selection and developing possible methods for gene therapy. To this end, we have fused retroviral integrase enzymes to sequence-specific DNA-binding domains and investigated target site selection by the resulting proteins. In a previous study, we purified and analyzed a fusion protein composed of human immunodeficiency virus integrase linked to the DNA-binding domain of lambda repressor. This fusion could direct selective integration in vitro into target DNA containing lambda repressor binding sites. Here we investigate the properties of a fusion integrase in the context of a human immunodeficiency virus provirus. We used a fusion of integrase to the DNA binding domain of the zinc finger protein zif268 (IN-zif). Initially we found that the fusion was highly detrimental to replication as measured by the multinuclear activation of a galactosidase indicator (MAGI) assay for infected centers. However, we found that viruses containing mixtures of wild-type integrase and IN-zif were infectious. We prepared preintegration complexes from cells infected with these viruses and found that such complexes directed increased integration near zif268 recognition sites.

UI MeSH Term Description Entries
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D002461 Cell Line, Transformed Eukaryotic cell line obtained in a quiescent or stationary phase which undergoes conversion to a state of unregulated growth in culture, resembling an in vitro tumor. It occurs spontaneously or through interaction with viruses, oncogenes, radiation, or drugs/chemicals. Transformed Cell Line,Cell Lines, Transformed,Transformed Cell Lines
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D015497 HIV-1 The type species of LENTIVIRUS and the etiologic agent of AIDS. It is characterized by its cytopathic effect and affinity for the T4-lymphocyte. Human immunodeficiency virus 1,HIV-I,Human Immunodeficiency Virus Type 1,Immunodeficiency Virus Type 1, Human
D016662 Virus Integration Insertion of viral DNA into host-cell DNA. This includes integration of phage DNA into bacterial DNA; (LYSOGENY); to form a PROPHAGE or integration of retroviral DNA into cellular DNA to form a PROVIRUS. Integration, Provirus,Integration, Virus,Provirus Integration,Viral integration,Integrations, Provirus,Integrations, Virus,Provirus Integrations,Viral integrations,Virus Integrations,integration, Viral,integrations, Viral
D051766 Early Growth Response Protein 1 An early growth response transcription factor and zinc finger protein that has been implicated in regulation of CELL PROLIFERATION and APOPTOSIS. EGR1 Transcription Factor,Early Growth Response Transcription Factor 1,Zinc Finger Protein 225,Znf225 Protein,Protein, Znf225,Transcription Factor, EGR1

Related Publications

F D Bushman, and M D Miller
September 1994, Proceedings of the National Academy of Sciences of the United States of America,
F D Bushman, and M D Miller
January 1999, Advances in virus research,
F D Bushman, and M D Miller
July 1992, Proceedings of the National Academy of Sciences of the United States of America,
F D Bushman, and M D Miller
June 1990, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!