Neuron loss, mossy fiber sprouting, and interictal spikes after intrahippocampal kainate in developing rats. 1996

J P Leite, and T L Babb, and J K Pretorius, and P A Kuhlman, and K M Yeoman, and G W Mathern
Brain Research Institute, University of California, Los Angeles, USA.

This study determined neuron losses, mossy fiber sprouting, and interictal spike frequencies in adult rats following intrahippocampal kainic acid (KA) injections during postnatal (PN) development. KA (0.4 micrograms/0.2 microliters; n = 64) was injected into one hippocampus and saline into the contralateral side between PN 7 to 30 days. Animals were sacrificed 28 to 256 days later, along with age-matched naive animals (controls; n = 20). Hippocampi were studied for: (1) Fascia dentata granule cell, hilar, and CA3c neuron counts; (2) neo-Timm's stained supragranular mossy fiber sprouting; and (3) hippocampal and intracerebral interictal spike densities (n = 13). Mossy fiber sprouting was quantified as the gray value differences between the inner and outer molecular layer. Statistically significant results (p < 0.05) showed the following: (1) Compared to controls, CA3c and hilar neuron counts were reduced in KA-hippocampi with injections at PN 7-10 and PN 12-14 respectively and counts decreased with older PN injections. Granule cell densities on the KA-side and saline injected hippocampi were not reduced compared to controls. (2) In adult rats, supragranular mossy fiber sprouting was observed in 2 of 7 PN 7 injected animals. Compared to controls, increased gray value differences, indicating mossy fiber sprouting, were found on the KA-side beginning with injuries at PN 12-14 and increasing with older PN injections. On the saline-side only PN 30 animals showed minimal sprouting. (3) Mossy fiber sprouting progressively increased on the KA-side with longer survivals in rats injured after PN 15. Sprouting correlated positively with later PN injections and longer post-injection survival intervals, and not with reduced hilar or CA3c neuron counts. (4) On the KA-side, mossy fiber gray value differences correlated positively with in vivo intrahippocampal interictal spike densities. These results indicate that during postnatal rat development intrahippocampal kainate excitotoxicity can occur as early as PN 7 and increases with older ages at injection. This rat model reproduces many of the pathologic, behavioral, and electrophysiologic features of human mesial temporal lobe epilepsy, and supports the hypothesis that hippocampal sclerosis can be the consequence of focal injury during early postnatal development that progressively evolves into a pathologic and epileptic focus.

UI MeSH Term Description Entries
D007608 Kainic Acid (2S-(2 alpha,3 beta,4 beta))-2-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid. Ascaricide obtained from the red alga Digenea simplex. It is a potent excitatory amino acid agonist at some types of excitatory amino acid receptors and has been used to discriminate among receptor types. Like many excitatory amino acid agonists it can cause neurotoxicity and has been used experimentally for that purpose. Digenic Acid,Kainate,Acid, Digenic,Acid, Kainic
D007839 Functional Laterality Behavioral manifestations of cerebral dominance in which there is preferential use and superior functioning of either the left or the right side, as in the preferred use of the right hand or right foot. Ambidexterity,Behavioral Laterality,Handedness,Laterality of Motor Control,Mirror Writing,Laterality, Behavioral,Laterality, Functional,Mirror Writings,Motor Control Laterality,Writing, Mirror,Writings, Mirror
D008297 Male Males
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D009454 Neurofibrils The delicate interlacing threads, formed by aggregations of neurofilaments and neurotubules, coursing through the CYTOPLASM of the body of a NEURON and extending from one DENDRITE into another or into the AXON. Neurofibril
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D004569 Electroencephalography Recording of electric currents developed in the brain by means of electrodes applied to the scalp, to the surface of the brain, or placed within the substance of the brain. EEG,Electroencephalogram,Electroencephalograms
D004827 Epilepsy A disorder characterized by recurrent episodes of paroxysmal brain dysfunction due to a sudden, disorderly, and excessive neuronal discharge. Epilepsy classification systems are generally based upon: (1) clinical features of the seizure episodes (e.g., motor seizure), (2) etiology (e.g., post-traumatic), (3) anatomic site of seizure origin (e.g., frontal lobe seizure), (4) tendency to spread to other structures in the brain, and (5) temporal patterns (e.g., nocturnal epilepsy). (From Adams et al., Principles of Neurology, 6th ed, p313) Aura,Awakening Epilepsy,Seizure Disorder,Epilepsy, Cryptogenic,Auras,Cryptogenic Epilepsies,Cryptogenic Epilepsy,Epilepsies,Epilepsies, Cryptogenic,Epilepsy, Awakening,Seizure Disorders
D004833 Epilepsy, Temporal Lobe A localization-related (focal) form of epilepsy characterized by recurrent seizures that arise from foci within the TEMPORAL LOBE, most commonly from its mesial aspect. A wide variety of psychic phenomena may be associated, including illusions, hallucinations, dyscognitive states, and affective experiences. The majority of complex partial seizures (see EPILEPSY, COMPLEX PARTIAL) originate from the temporal lobes. Temporal lobe seizures may be classified by etiology as cryptogenic, familial, or symptomatic. (From Adams et al., Principles of Neurology, 6th ed, p321). Epilepsy, Benign Psychomotor, Childhood,Benign Psychomotor Epilepsy, Childhood,Childhood Benign Psychomotor Epilepsy,Epilepsy, Lateral Temporal,Epilepsy, Uncinate,Epilepsies, Lateral Temporal,Epilepsies, Temporal Lobe,Epilepsies, Uncinate,Lateral Temporal Epilepsies,Lateral Temporal Epilepsy,Temporal Lobe Epilepsies,Temporal Lobe Epilepsy,Uncinate Epilepsies,Uncinate Epilepsy

Related Publications

J P Leite, and T L Babb, and J K Pretorius, and P A Kuhlman, and K M Yeoman, and G W Mathern
August 1990, Experimental neurology,
J P Leite, and T L Babb, and J K Pretorius, and P A Kuhlman, and K M Yeoman, and G W Mathern
April 1998, Epilepsy research,
J P Leite, and T L Babb, and J K Pretorius, and P A Kuhlman, and K M Yeoman, and G W Mathern
January 2013, Journal of molecular neuroscience : MN,
J P Leite, and T L Babb, and J K Pretorius, and P A Kuhlman, and K M Yeoman, and G W Mathern
September 1998, Epilepsy research,
J P Leite, and T L Babb, and J K Pretorius, and P A Kuhlman, and K M Yeoman, and G W Mathern
October 1998, Neuroscience letters,
J P Leite, and T L Babb, and J K Pretorius, and P A Kuhlman, and K M Yeoman, and G W Mathern
February 1995, Journal of neurosurgery,
J P Leite, and T L Babb, and J K Pretorius, and P A Kuhlman, and K M Yeoman, and G W Mathern
February 1999, The Journal of comparative neurology,
J P Leite, and T L Babb, and J K Pretorius, and P A Kuhlman, and K M Yeoman, and G W Mathern
April 2004, Epilepsia,
J P Leite, and T L Babb, and J K Pretorius, and P A Kuhlman, and K M Yeoman, and G W Mathern
June 1993, The Japanese journal of psychiatry and neurology,
J P Leite, and T L Babb, and J K Pretorius, and P A Kuhlman, and K M Yeoman, and G W Mathern
April 1997, Nihon Ika Daigaku zasshi,
Copied contents to your clipboard!