Saccharomyces cerevisiae mutants selected for increased production of Trichoderma reesei cellulases. 1996

S Aho, and A Arffman, and M Korhola
Research Laboratories, Alko Ltd., Helsinki, Finland.

Trichoderma reesei endoglucanase I (EGI) was used as a reporter enzyme for screening mutagenized yeast strains for increased ability to produce protein. Sixteen haploid Saccharomyces cerevisiae strains, transformed with a yeast multicopy vector pALK222, containing the EGI cDNA under the ADH1 promoter, produced EGI activity of 10(-5)-10(-4) g/l. On the average 93% of the total activity was secreted into the culture medium. Two strains with opposite mating types were mutagenized, and several mutants were isolated possessing up to 45-fold higher EGI activity. The best mutants were remutagenized and a second-generation mutant, strain 2804, with an additional twofold increase in EGI activity was selected. The mutant strain 2804 grew more slowly and reached a lower final cell density than the parental strain. In the selective minimal medium, the 2804 strain produced 40 mg/l immunoreactive EGI protein, but only 2% was active enzyme. In the rich medium the secreted EGI enzyme stayed active, but without selection pressure the EGI production ceased after 2 days of cultivation, when the strain 2804 had produced 10 mg/l of EGI. A sevenfold difference was found between the parental and the 2804 strain in their total EGI production relative to cell density. The difference in favour of the mutant strain was also detected on the mRNA level. The 2804 mutant was found to be more active than the parental strain also in the production of T. reesei cellulases, cellobiohydrolase I, and cellobiohydrolase II.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D002480 Cellulase An endocellulase with specificity for the hydrolysis of 1,4-beta-glucosidic linkages in CELLULOSE, lichenin, and cereal beta-glucans. Endo-1,4-beta-Glucanase,Cellulysin,Endoglucanase,Endoglucanase A,Endoglucanase C,Endoglucanase E,Endoglucanase IV,Endoglucanase Y,beta-1,4-Glucan-4-Glucanohydrolase,Endo 1,4 beta Glucanase,beta 1,4 Glucan 4 Glucanohydrolase
D003433 Crosses, Genetic Deliberate breeding of two different individuals that results in offspring that carry part of the genetic material of each parent. The parent organisms must be genetically compatible and may be from different varieties or closely related species. Cross, Genetic,Genetic Cross,Genetic Crosses
D012331 RNA, Fungal Ribonucleic acid in fungi having regulatory and catalytic roles as well as involvement in protein synthesis. Fungal RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D014242 Trichoderma A mitosporic fungal genus frequently found in soil and on wood. It is sometimes used for controlling pathogenic fungi. Its teleomorph is HYPOCREA. Trichodermas
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions
D043366 Cellulose 1,4-beta-Cellobiosidase An exocellulase with specificity for the hydrolysis of 1,4-beta-D-glucosidic linkages in CELLULOSE and cellotetraose. It catalyzes the hydrolysis of terminal non-reducing ends of beta-D-glucosides with release of CELLOBIOSE. Exo-Cellobiohydrolase,1,4-beta-D-Glucan Cellobiohydrolase,Beta-Glucancellobiohydrolase,CEL1 Protein,CbhI Protein,Cellobiohydrolase,Cellobiohydrolase A,Cellobiohydrolase I,Cellobiohydrolase II,Exoglucanase II,1,4 beta D Glucan Cellobiohydrolase,1,4-beta-Cellobiosidase, Cellulose,Beta Glucancellobiohydrolase,Cellobiohydrolase, 1,4-beta-D-Glucan,Cellulose 1,4 beta Cellobiosidase,Exo Cellobiohydrolase

Related Publications

S Aho, and A Arffman, and M Korhola
November 2017, Microbial biotechnology,
S Aho, and A Arffman, and M Korhola
October 1995, Applied and environmental microbiology,
S Aho, and A Arffman, and M Korhola
March 1990, Journal of biotechnology,
S Aho, and A Arffman, and M Korhola
February 1996, Current genetics,
S Aho, and A Arffman, and M Korhola
January 1985, Acta microbiologica Polonica,
S Aho, and A Arffman, and M Korhola
September 1987, Yeast (Chichester, England),
S Aho, and A Arffman, and M Korhola
December 1977, Applied and environmental microbiology,
S Aho, and A Arffman, and M Korhola
March 1996, Applied and environmental microbiology,
S Aho, and A Arffman, and M Korhola
June 2009, Indian journal of microbiology,
Copied contents to your clipboard!