Dimer/monomer equilibrium and domain separations of Escherichia coli ribosomal protein L7/L12. 1996

B D Hamman, and A V Oleinikov, and G G Jokhadze, and R R Traut, and D M Jameson
Department of Biochemistry and Biophysics, University of Hawaii, Honolulu 96822, USA.

The dimer to monomer equilibrium and interdomain separations of cysteine variants of L7/L12 have been investigated using fluorescence spectroscopy. Steady-state polarization measurements on cysteine containing variants of L7/L12, labeled with 5-(iodoacetamido)fluorescein, demonstrated dimer to monomer dissociation constants near 30 nM for variants labeled at position 33, in the N-terminal domain, and positions 63 and 89, in the C-terminal domain. A dissociation constant near 300 nM was determined for a variant labeled at position 12, in the N-terminal domain. The polarization of a labeled C-terminal fragment did not change over the range of 200 microM to 1 nM, indicating that this construct remains monomeric at these concentrations, whereas a dimer to monomer dissociation constant near 300 nM was observed for an FITC labeled N-terminal fragment. Intersubunit fluorescence resonance energy self-transfer was observed when appropriate probes were attached to cysteines at residues 12 or 33, located in the N-terminal domain. Probes attached to cysteines at positions 63 or 89 in the C-terminal domain, however, did not exhibit intersubunit self-transfer. These results indicate that these residues in the C-terminal domains are, on average, separated by greater than 85 A. Intersubunit self-transfer does occur in a C-89 double mutation variant lacking 11 residues in the putative hinge region, indicating that the loss of the hinge region brings the two C-terminal domains closer together. Rapid subunit exchange between unlabeled wild-type L7/L12 and L7/L12 variants labeled in the N-terminal domain was also demonstrated by the loss of self-transfer upon mixing of the two proteins.

UI MeSH Term Description Entries
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D003545 Cysteine A thiol-containing non-essential amino acid that is oxidized to form CYSTINE. Cysteine Hydrochloride,Half-Cystine,L-Cysteine,Zinc Cysteinate,Half Cystine,L Cysteine
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005452 Fluoresceins A family of spiro(isobenzofuran-1(3H),9'-(9H)xanthen)-3-one derivatives. These are used as dyes, as indicators for various metals, and as fluorescent labels in immunoassays. Tetraiodofluorescein
D005454 Fluorescence Polarization Measurement of the polarization of fluorescent light from solutions or microscopic specimens. It is used to provide information concerning molecular size, shape, and conformation, molecular anisotropy, electronic energy transfer, molecular interaction, including dye and coenzyme binding, and the antigen-antibody reaction. Anisotropy, Fluorescence,Fluorescence Anisotropy,Polarization, Fluorescence,Anisotropies, Fluorescence,Fluorescence Anisotropies,Fluorescence Polarizations,Polarizations, Fluorescence
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D012269 Ribosomal Proteins Proteins found in ribosomes. They are believed to have a catalytic function in reconstituting biologically active ribosomal subunits. Proteins, Ribosomal,Ribosomal Protein,Protein, Ribosomal
D014644 Genetic Variation Genotypic differences observed among individuals in a population. Genetic Diversity,Variation, Genetic,Diversity, Genetic,Diversities, Genetic,Genetic Diversities,Genetic Variations,Variations, Genetic
D019281 Dimerization The process by which two molecules of the same chemical composition form a condensation product or polymer. Dimerizations
D019793 Fluorescein A phthalic indicator dye that appears yellow-green in normal tear film and bright green in a more alkaline medium such as the aqueous humor. Fluorescein Sodium,Sodium Fluorescein,C.I. 45350,Colircusi Fluoresceina,D & C Yellow No. 7,D & C Yellow No. 8,D and C Yellow No. 7,D and C Yellow No. 8,D&C Yellow No. 7,D&C Yellow No. 8,Diofluor,Disodium Fluorescein,Fluor-I-Strip A.T.,Fluorescein Dipotassium Salt,Fluorescein Disodium Salt,Fluorescein Monosodium Salt,Fluorescite,Fluorescéine sodique Faure,Fluorets,Ful-Glo,Funduscein,Minims Fluorescein Sodium,Minims Fluoresceine,Minims Stains,Optifluor Diba,Uranine,Dipotassium Salt, Fluorescein,Disodium Salt, Fluorescein,Fluor I Strip A.T.,Fluorescein Sodium, Minims,Fluorescein, Disodium,Fluorescein, Sodium,Fluoresceina, Colircusi,Fluoresceine, Minims,Ful Glo,Monosodium Salt, Fluorescein,Sodium, Fluorescein

Related Publications

B D Hamman, and A V Oleinikov, and G G Jokhadze, and R R Traut, and D M Jameson
April 1998, Proceedings of the National Academy of Sciences of the United States of America,
B D Hamman, and A V Oleinikov, and G G Jokhadze, and R R Traut, and D M Jameson
November 1976, FEBS letters,
B D Hamman, and A V Oleinikov, and G G Jokhadze, and R R Traut, and D M Jameson
June 1989, The Journal of biological chemistry,
B D Hamman, and A V Oleinikov, and G G Jokhadze, and R R Traut, and D M Jameson
July 1996, Biochemistry and molecular biology international,
B D Hamman, and A V Oleinikov, and G G Jokhadze, and R R Traut, and D M Jameson
November 1996, Biophysical chemistry,
B D Hamman, and A V Oleinikov, and G G Jokhadze, and R R Traut, and D M Jameson
January 1990, Journal of bacteriology,
B D Hamman, and A V Oleinikov, and G G Jokhadze, and R R Traut, and D M Jameson
June 1987, Journal of molecular biology,
B D Hamman, and A V Oleinikov, and G G Jokhadze, and R R Traut, and D M Jameson
February 1982, Experientia,
B D Hamman, and A V Oleinikov, and G G Jokhadze, and R R Traut, and D M Jameson
October 1976, European journal of biochemistry,
Copied contents to your clipboard!