Polypeptide translocation machinery of the yeast endoplasmic reticulum. 1996

S K Lyman, and R Schekman
Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California at Berkeley 94720, USA.

Proteins enter the secretory pathway by two general routes. In one, the complete polypeptide is made in the cytoplasm and held in an incompletely folded state by chaperoning adenosine triphosphatases (ATPases) such as hsp70. In Saccharomyces cerevisiae, fully synthesized secretory precursors engage the endoplasmic reticulum (ER) membrane by interaction with a set of Sec proteins comprising the polypeptide translocation apparatus (Sec61p, Sec62p, Sec63p, Sec71p, Sec72p). Productive interaction requires displacement of hsp70 from the precursor, a reaction that is facilitated by Ydj1p, a homologue of the Escherichia coli DnaJ protein. Both DnaJ and Ydj1p regulate chaperone activity by stimulating the ATPase activity of their respective hsp70 partners (E. coli DnaK and S. cerevisiae Ssa1p, respectively). In the ER lumen, another hsp70 chaperone, BiP, binds ATP and interacts with the ER membrane via its contact with a peptide loop of Sec63p. This loop represents yet another DnaJ homologue in that it contains a region of approximately 70 residue similarity to the 'J box', the most conserved region of the DnaJ family of proteins. In the presence of ATP, under conditions in which BiP can bind to Sec63p, the secretory precursor passes from the cytosol into the lumen through a membrane channel formed by Sec61p. A second route to the membrane pore that is used by many other secretory precursors, particularly in mammalian cells, requires that the polypeptide engage the ER membrane as the nascent chain emerges from the ribosome. Such cotranslational translocation bypasses the need for certain Sec proteins, instead utilizing an alternate set of cytosolic and membrane factors that allows the nascent chain to be inserted directly into the Sec61p channel.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D004721 Endoplasmic Reticulum A system of cisternae in the CYTOPLASM of many cells. In places the endoplasmic reticulum is continuous with the plasma membrane (CELL MEMBRANE) or outer membrane of the nuclear envelope. If the outer surfaces of the endoplasmic reticulum membranes are coated with ribosomes, the endoplasmic reticulum is said to be rough-surfaced (ENDOPLASMIC RETICULUM, ROUGH); otherwise it is said to be smooth-surfaced (ENDOPLASMIC RETICULUM, SMOOTH). (King & Stansfield, A Dictionary of Genetics, 4th ed) Ergastoplasm,Reticulum, Endoplasmic
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations

Related Publications

S K Lyman, and R Schekman
December 1982, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
S K Lyman, and R Schekman
July 1992, The Journal of biological chemistry,
S K Lyman, and R Schekman
November 1996, The Journal of biological chemistry,
S K Lyman, and R Schekman
January 2020, The EMBO journal,
S K Lyman, and R Schekman
March 2009, Nature,
S K Lyman, and R Schekman
September 2014, The Journal of biological chemistry,
S K Lyman, and R Schekman
June 2003, The Journal of biological chemistry,
Copied contents to your clipboard!