Characterisation of the chicken Cu,Zn superoxide dismutase gene. 1996

J L Stanton, and S D Wilton, and N G Laing
Australian Neuromuscular Research Institute, Queen Elizabeth II Medical Centre, Nedlands, Australia.

A PCR product was generated from embryonic chicken spinal cord cDNA using primers designed to conserved regions of the human and bovine amino and carboxyl-terminal coding sequences of the Cu,Zn superoxide dismutase (SOD1, EC 1.15.1.1) gene. DNA sequencing confirmed this product to be the chicken homologue of the SOD1 gene. This sequence was compared to SOD1 from bovine, human and Xenopus laevis. Important structural features of SOD1 are shown to be conserved in the chicken gene.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000690 Amyotrophic Lateral Sclerosis A degenerative disorder affecting upper MOTOR NEURONS in the brain and lower motor neurons in the brain stem and SPINAL CORD. Disease onset is usually after the age of 50 and the process is usually fatal within 3 to 6 years. Clinical manifestations include progressive weakness, atrophy, FASCICULATION, hyperreflexia, DYSARTHRIA, dysphagia, and eventual paralysis of respiratory function. Pathologic features include the replacement of motor neurons with fibrous ASTROCYTES and atrophy of anterior SPINAL NERVE ROOTS and corticospinal tracts. (From Adams et al., Principles of Neurology, 6th ed, pp1089-94) ALS - Amyotrophic Lateral Sclerosis,Lou Gehrig Disease,Motor Neuron Disease, Amyotrophic Lateral Sclerosis,Amyotrophic Lateral Sclerosis With Dementia,Amyotrophic Lateral Sclerosis, Guam Form,Amyotrophic Lateral Sclerosis, Parkinsonism-Dementia Complex of Guam,Amyotrophic Lateral Sclerosis-Parkinsonism-Dementia Complex 1,Charcot Disease,Dementia With Amyotrophic Lateral Sclerosis,Gehrig's Disease,Guam Disease,Guam Form of Amyotrophic Lateral Sclerosis,Lou Gehrig's Disease,Lou-Gehrigs Disease,ALS Amyotrophic Lateral Sclerosis,Amyotrophic Lateral Sclerosis Parkinsonism Dementia Complex 1,Amyotrophic Lateral Sclerosis, Parkinsonism Dementia Complex of Guam,Disease, Guam,Disease, Lou-Gehrigs,Gehrig Disease,Gehrigs Disease,Sclerosis, Amyotrophic Lateral
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013482 Superoxide Dismutase An oxidoreductase that catalyzes the reaction between SUPEROXIDES and hydrogen to yield molecular oxygen and hydrogen peroxide. The enzyme protects the cell against dangerous levels of superoxide. Hemocuprein,Ag-Zn Superoxide Dismutase,Cobalt Superoxide Dismutase,Cu-Superoxide Dismutase,Erythrocuprein,Fe-Superoxide Dismutase,Fe-Zn Superoxide Dismutase,Iron Superoxide Dismutase,Manganese Superoxide Dismutase,Mn-SOD,Mn-Superoxide Dismutase,Ag Zn Superoxide Dismutase,Cu Superoxide Dismutase,Dismutase, Ag-Zn Superoxide,Dismutase, Cobalt Superoxide,Dismutase, Cu-Superoxide,Dismutase, Fe-Superoxide,Dismutase, Fe-Zn Superoxide,Dismutase, Iron Superoxide,Dismutase, Manganese Superoxide,Dismutase, Mn-Superoxide,Dismutase, Superoxide,Fe Superoxide Dismutase,Fe Zn Superoxide Dismutase,Mn SOD,Mn Superoxide Dismutase,Superoxide Dismutase, Ag-Zn,Superoxide Dismutase, Cobalt,Superoxide Dismutase, Fe-Zn,Superoxide Dismutase, Iron,Superoxide Dismutase, Manganese
D017386 Sequence Homology, Amino Acid The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species. Homologous Sequences, Amino Acid,Amino Acid Sequence Homology,Homologs, Amino Acid Sequence,Homologs, Protein Sequence,Homology, Protein Sequence,Protein Sequence Homologs,Protein Sequence Homology,Sequence Homology, Protein,Homolog, Protein Sequence,Homologies, Protein Sequence,Protein Sequence Homolog,Protein Sequence Homologies,Sequence Homolog, Protein,Sequence Homologies, Protein,Sequence Homologs, Protein
D018076 DNA, Complementary Single-stranded complementary DNA synthesized from an RNA template by the action of RNA-dependent DNA polymerase. cDNA (i.e., complementary DNA, not circular DNA, not C-DNA) is used in a variety of molecular cloning experiments as well as serving as a specific hybridization probe. Complementary DNA,cDNA,cDNA Probes,Probes, cDNA

Related Publications

J L Stanton, and S D Wilton, and N G Laing
January 1991, Comparative biochemistry and physiology. B, Comparative biochemistry,
J L Stanton, and S D Wilton, and N G Laing
February 1989, Nucleic acids research,
J L Stanton, and S D Wilton, and N G Laing
March 1989, Nucleic acids research,
J L Stanton, and S D Wilton, and N G Laing
August 1989, Nucleic acids research,
J L Stanton, and S D Wilton, and N G Laing
June 1986, Proceedings of the National Academy of Sciences of the United States of America,
J L Stanton, and S D Wilton, and N G Laing
September 2000, Biochemical and biophysical research communications,
J L Stanton, and S D Wilton, and N G Laing
December 1987, Nucleic acids research,
J L Stanton, and S D Wilton, and N G Laing
September 1991, Virology,
J L Stanton, and S D Wilton, and N G Laing
June 1995, Plant physiology,
J L Stanton, and S D Wilton, and N G Laing
January 1991, Free radical research communications,
Copied contents to your clipboard!