Chronic hypoxia increases beta 1-adrenergic receptor mRNA and density but not signaling in neonatal rat cardiac myocytes. 1996

H T Li, and N Y Honbo, and J S Karliner
Cardiology Section, Veterans Affairs Medical Center, San Francisco, CA 94121, USA.

BACKGROUND It is well recognized that the beta-adrenergic receptor-adenylylcyclase system is altered during myocardial ischemia/hypoxia. However, there are no data regarding either regulation of beta-adrenergic receptors, particularly at the mRNA level, or adenylylcyclase activity in isolated cardiac myocytes exposed to chronic hypoxia. RESULTS In a chronic hypoxia model in which neonatal rat ventricular myocytes were exposed to a 1% O2 environment for 72 hours, we investigated (1) beta 1-mRNA and receptor expression and adenylylcyclase activity and (2) beta 1-mRNA and receptor downregulation and adenylylcyclase desensitization induced by prolonged norepinephrine incubation. We found that hypoxia for 72 hours increased myocardial membrane beta 1-adrenergic receptor density by 44%. This increase was not associated with a corresponding decrease in cytosolic beta 1-adrenergic receptors. RNase protection assays demonstrated that hypoxia increased the steady-state levels of beta 1-mRNA by 109%. Adenylylcyclase activity stimulated by isoproterenol, sodium fluoride, guanyl-5'-imidodiphosphate, and forskolin in hypoxic membranes was not altered compared with normoxic controls. Hypoxia for 72 hours also did not affect norepinephrine-induced beta 1-mRNA and receptor downregulation and adenylylcyclase desensitization in response to isoproterenol, guanyl-5'-imidodiphosphate, or forskolin. CONCLUSIONS In neonatal rat cardiac myocytes, chronic hypoxia (1) increases beta 1-mRNA and receptor expression but does not alter adenylylcyclase activity stimulated at either the receptor or the postreceptor level and (2) does not affect agonist-induced beta 1-mRNA and receptor downregulation and desensitization of the adenylylcyclase response.

UI MeSH Term Description Entries
D007457 Iodine Radioisotopes Unstable isotopes of iodine that decay or disintegrate emitting radiation. I atoms with atomic weights 117-139, except I 127, are radioactive iodine isotopes. Radioisotopes, Iodine
D007545 Isoproterenol Isopropyl analog of EPINEPHRINE; beta-sympathomimetic that acts on the heart, bronchi, skeletal muscle, alimentary tract, etc. It is used mainly as bronchodilator and heart stimulant. Isoprenaline,Isopropylarterenol,4-(1-Hydroxy-2-((1-methylethyl)amino)ethyl)-1,2-benzenediol,Euspiran,Isadrin,Isadrine,Isopropyl Noradrenaline,Isopropylnoradrenaline,Isopropylnorepinephrine,Isoproterenol Hydrochloride,Isoproterenol Sulfate,Isuprel,Izadrin,Norisodrine,Novodrin,Hydrochloride, Isoproterenol,Noradrenaline, Isopropyl,Sulfate, Isoproterenol
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D010869 Pindolol A moderately lipophilic beta blocker (ADRENERGIC BETA-ANTAGONISTS). It is non-cardioselective and has intrinsic sympathomimetic actions, but little membrane-stabilizing activity. (From Martindale, The Extra Pharmocopoeia, 30th ed, p638) Prindolol,LB-46,Visken,LB 46,LB46
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts

Related Publications

H T Li, and N Y Honbo, and J S Karliner
October 1988, Neuroscience letters,
H T Li, and N Y Honbo, and J S Karliner
October 1991, Mechanisms of ageing and development,
H T Li, and N Y Honbo, and J S Karliner
February 1998, Proceedings of the National Academy of Sciences of the United States of America,
H T Li, and N Y Honbo, and J S Karliner
January 1995, Circulation research,
H T Li, and N Y Honbo, and J S Karliner
September 2002, The Journal of biological chemistry,
H T Li, and N Y Honbo, and J S Karliner
January 2001, Heart, lung & circulation,
H T Li, and N Y Honbo, and J S Karliner
July 1991, The Journal of clinical investigation,
Copied contents to your clipboard!