Cloning and characterization of two groESL operons of Rhodobacter sphaeroides: transcriptional regulation of the heat-induced groESL operon. 1997

W T Lee, and K C Terlesky, and F R Tabita
Department of Microbiology, The Ohio State University, Columbus 43210-1292, USA.

The nonsulfur purple bacterium Rhodobacter sphaeroides was found to contain two groESL operons. The groESL1 heat shock operon was cloned from a genomic library, and a 2.8-kb DNA fragment was sequenced and found to contain the groES and groEL genes. The deduced amino acid sequences of GroEL1 (cpn60) and GroES1 (cpn10) were in agreement with N-terminal sequences previously obtained for the isolated proteins (K. C. Terlesky and F. R. Tabita, Biochemistry 30:8181-8186, 1991). These sequences show a high degree of similarity to groESL genes isolated from other bacteria. Northern analysis indicated that the groESL1 genes were expressed as part of a 2.2-kb polycistronic transcript that is induced 13-fold after heat shock. Transcript size was not affected by heat shock; however, the amount of transcript was induced to its greatest extent 15 to 30 min after a 40 degrees C heat shock, from an initial temperature of 28 degrees C, and remained elevated up to 120 min. The R. sphaeroides groESL1 operon contains a putative hairpin loop at the start of the transcript that is present in other bacterial heat shock genes. Primer extension of the message showed that the transcription start site is at the start of this conserved hairpin loop. In this region were also found putative -35 and -10 sequences that are conserved upstream from other bacterial heat shock genes. Transcription of the groESL1 genes was unexpectedly low under photoautotrophic growth conditions. Thus far, it has not been possible to construct a groESL1 deletion strain, perhaps indicating that these genes are essential for growth. A second operon (groESL2) was also cloned from R. sphaeroides, using a groEL1 gene fragment as a probe; however, no transcript was observed for this operon under several different growth conditions. A groESL2 deletion strain was constructed, but there was no detectable change in the phenotype of this strain compared to the parental strain.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D009876 Operon In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION. Operons
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D006358 Hot Temperature Presence of warmth or heat or a temperature notably higher than an accustomed norm. Heat,Hot Temperatures,Temperature, Hot,Temperatures, Hot
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012242 Rhodobacter sphaeroides Spherical phototrophic bacteria found in mud and stagnant water exposed to light. Rhodopseudomonas sphaeroides,Rhodobacter spheroides,Rhodopseudomonas spheroides

Related Publications

W T Lee, and K C Terlesky, and F R Tabita
January 1998, Methods in enzymology,
W T Lee, and K C Terlesky, and F R Tabita
January 2002, Journal of bioscience and bioengineering,
W T Lee, and K C Terlesky, and F R Tabita
June 1992, Journal of bacteriology,
W T Lee, and K C Terlesky, and F R Tabita
December 1995, Gene,
W T Lee, and K C Terlesky, and F R Tabita
June 2001, Molecules and cells,
W T Lee, and K C Terlesky, and F R Tabita
September 1996, Archives of microbiology,
W T Lee, and K C Terlesky, and F R Tabita
April 1993, Journal of bacteriology,
W T Lee, and K C Terlesky, and F R Tabita
June 1992, Journal of bacteriology,
W T Lee, and K C Terlesky, and F R Tabita
September 1995, The Journal of biological chemistry,
W T Lee, and K C Terlesky, and F R Tabita
January 1988, Photosynthesis research,
Copied contents to your clipboard!