Pathways of glycosphingolipid biosynthesis in SW13 cells in the presence and absence of vimentin intermediate filaments. 1996

B K Gillard, and R G Harrell, and D M Marcus
Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA.

We reported previously that the incorporation of sugars into glycosphingolipids (GSL) is diminished in SW13 cells that lack a vimentin intermediate filament (IF) network (vim-) compared to vim+ cells. To further analyze the nature of this abnormality, we double-labeled cells with 3H-serine and 14C-sugars. There was no difference between vim+ and vim- cells in the incorporation of serine into GSL, although the usual difference in sugar incorporation was observed. This indicated that the defect in vim- cells was not in the incorporation of sugars into ceramide synthesized de novo by acylation of sphinganine (pathway 1). Sugars can also be incorporated into ceramide synthesized from sphingosine that is derived from catabolism of sphingolipids (pathway 2), and into GSL that recycle through the Golgi apparatus from endosomes (pathway 3). The amount of galactose and glucosamine incorporated into GSL in these three pathways was analyzed by the use of two inhibitors of sphingolipid biosynthesis. beta-Chloroalanine inhibits the de novo synthesis of sphinganine (pathway 1), and fumonisin B1 inhibits the acylation of sphinganine and sphingosine (pathways 1 and 2). We were surprised to observe that in both vim+ and vim- cells only 20-40% of sugar incorporation into GSL took place in pathway 1, and 60-80% of sugar incorporation took place in the recycling pathways. Moreover, in contrast to larger GSL, GlcCer was not synthesized in pathway 3. Our observations indicate that vimentin IF facilitate the recycling of GSL and sphingosine, and that the differences between vim+ and vim- cells are predominantly in pathways 2 and 3. Furthermore, although it is generally believed that virtually all GSL are synthesized in the de novo pathway, these data indicate that the recycling pathways predominate in the incorporation of sugars into GSL in SW13 cells.

UI MeSH Term Description Entries
D011992 Endosomes Cytoplasmic vesicles formed when COATED VESICLES shed their CLATHRIN coat. Endosomes internalize macromolecules bound by receptors on the cell surface. Receptosomes,Endosome,Receptosome
D002518 Ceramides Members of the class of neutral glycosphingolipids. They are the basic units of SPHINGOLIPIDS. They are sphingoids attached via their amino groups to a long chain fatty acyl group. They abnormally accumulate in FABRY DISEASE. Ceramide
D005677 G(M1) Ganglioside A specific monosialoganglioside that accumulates abnormally within the nervous system due to a deficiency of GM1-b-galactosidase, resulting in GM1 gangliosidosis. GM1 Ganglioside,Monosialosyl Tetraglycosyl Ceramide,GM1a Monosialoganglioside,Ceramide, Monosialosyl Tetraglycosyl,Ganglioside, GM1,Monosialoganglioside, GM1a,Tetraglycosyl Ceramide, Monosialosyl
D005690 Galactose An aldohexose that occurs naturally in the D-form in lactose, cerebrosides, gangliosides, and mucoproteins. Deficiency of galactosyl-1-phosphate uridyltransferase (GALACTOSE-1-PHOSPHATE URIDYL-TRANSFERASE DEFICIENCY DISEASE) causes an error in galactose metabolism called GALACTOSEMIA, resulting in elevations of galactose in the blood. D-Galactose,Galactopyranose,Galactopyranoside,D Galactose
D005944 Glucosamine 2-Amino-2-Deoxyglucose,Dona,Dona S,Glucosamine Sulfate,Hespercorbin,Xicil,2 Amino 2 Deoxyglucose,Sulfate, Glucosamine
D006028 Glycosphingolipids Lipids containing at least one monosaccharide residue and either a sphingoid or a ceramide (CERAMIDES). They are subdivided into NEUTRAL GLYCOSPHINGOLIPIDS comprising monoglycosyl- and oligoglycosylsphingoids and monoglycosyl- and oligoglycosylceramides; and ACIDIC GLYCOSPHINGOLIPIDS which comprises sialosylglycosylsphingolipids (GANGLIOSIDES); SULFOGLYCOSPHINGOLIPIDS (formerly known as sulfatides), glycuronoglycosphingolipids, and phospho- and phosphonoglycosphingolipids. (From IUPAC's webpage) Asialoganglioside,Asialogangliosides,Glycosphingolipid,Sphingoglycolipid,Sphingoglycolipids
D006056 Golgi Apparatus A stack of flattened vesicles that functions in posttranslational processing and sorting of proteins, receiving them from the rough ENDOPLASMIC RETICULUM and directing them to secretory vesicles, LYSOSOMES, or the CELL MEMBRANE. The movement of proteins takes place by transfer vesicles that bud off from the rough endoplasmic reticulum or Golgi apparatus and fuse with the Golgi, lysosomes or cell membrane. (From Glick, Glossary of Biochemistry and Molecular Biology, 1990) Golgi Complex,Apparatus, Golgi,Complex, Golgi
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000215 Acylation The addition of an organic acid radical into a molecule.
D000306 Adrenal Cortex Neoplasms Tumors or cancers of the ADRENAL CORTEX. Adrenocortical Cancer,Cancer of Adrenal Cortex,Adrenal Cortex Cancer,Cancer of the Adrenal Cortex,Neoplasms, Adrenal Cortex,Adrenal Cortex Cancers,Adrenal Cortex Neoplasm,Adrenocortical Cancers,Cancer, Adrenal Cortex,Cancer, Adrenocortical,Cancers, Adrenal Cortex,Cancers, Adrenocortical,Neoplasm, Adrenal Cortex

Related Publications

B K Gillard, and R G Harrell, and D M Marcus
January 1985, Archives d'anatomie et de cytologie pathologiques,
B K Gillard, and R G Harrell, and D M Marcus
November 1997, Doklady Akademii nauk,
B K Gillard, and R G Harrell, and D M Marcus
September 2002, Current biology : CB,
B K Gillard, and R G Harrell, and D M Marcus
May 1999, Molecular biology of the cell,
B K Gillard, and R G Harrell, and D M Marcus
January 2002, Journal of muscle research and cell motility,
B K Gillard, and R G Harrell, and D M Marcus
December 1987, Journal of cell science,
B K Gillard, and R G Harrell, and D M Marcus
August 1998, Experimental cell research,
B K Gillard, and R G Harrell, and D M Marcus
August 2010, American journal of physiology. Cell physiology,
B K Gillard, and R G Harrell, and D M Marcus
February 2014, Biomaterials,
Copied contents to your clipboard!