Intensity correction of phased-array surface coil images. 1996

J W Murakami, and C E Hayes, and E Weinberger
Department of Radiology, University of Washington, Seattle 98195, USA.

Phased-array coils distribute the high signal-to-noise ratio (SNR) performance of their small component surface coils over the larger area covered by the entire array. The inhomogeneous sensitivity profiles of the component surface coils result in images with very high signal near the phased-array and decreased signal far from the array. This paper presents a postprocessing algorithm for correcting these coil-related intensity variations. The algorithm's performance was evaluated by correcting images of volunteers acquired with several different receive-only phased-array surface coils.

UI MeSH Term Description Entries
D007091 Image Processing, Computer-Assisted A technique of inputting two-dimensional or three-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer. Biomedical Image Processing,Computer-Assisted Image Processing,Digital Image Processing,Image Analysis, Computer-Assisted,Image Reconstruction,Medical Image Processing,Analysis, Computer-Assisted Image,Computer-Assisted Image Analysis,Computer Assisted Image Analysis,Computer Assisted Image Processing,Computer-Assisted Image Analyses,Image Analyses, Computer-Assisted,Image Analysis, Computer Assisted,Image Processing, Biomedical,Image Processing, Computer Assisted,Image Processing, Digital,Image Processing, Medical,Image Processings, Medical,Image Reconstructions,Medical Image Processings,Processing, Biomedical Image,Processing, Digital Image,Processing, Medical Image,Processings, Digital Image,Processings, Medical Image,Reconstruction, Image,Reconstructions, Image
D008159 Lumbar Vertebrae VERTEBRAE in the region of the lower BACK below the THORACIC VERTEBRAE and above the SACRAL VERTEBRAE. Vertebrae, Lumbar
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002574 Cervical Vertebrae The first seven VERTEBRAE of the SPINAL COLUMN, which correspond to the VERTEBRAE of the NECK. Cervical Spine,Cervical Spines,Spine, Cervical,Vertebrae, Cervical
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm

Related Publications

J W Murakami, and C E Hayes, and E Weinberger
September 2000, Journal of magnetic resonance imaging : JMRI,
J W Murakami, and C E Hayes, and E Weinberger
December 1993, Radiology,
J W Murakami, and C E Hayes, and E Weinberger
January 2005, Information processing in medical imaging : proceedings of the ... conference,
J W Murakami, and C E Hayes, and E Weinberger
January 1995, AJNR. American journal of neuroradiology,
J W Murakami, and C E Hayes, and E Weinberger
June 2008, Journal of magnetic resonance imaging : JMRI,
J W Murakami, and C E Hayes, and E Weinberger
September 2018, Magnetic resonance imaging,
J W Murakami, and C E Hayes, and E Weinberger
February 1987, AJR. American journal of roentgenology,
J W Murakami, and C E Hayes, and E Weinberger
January 2000, European radiology,
J W Murakami, and C E Hayes, and E Weinberger
August 1998, Magnetic resonance in medicine,
J W Murakami, and C E Hayes, and E Weinberger
August 2013, IEEE transactions on biomedical circuits and systems,
Copied contents to your clipboard!