Protective immunity to Listeria monocytogenes elicited by immunization with heat-killed Listeria and IL-12. Potential mechanism of IL-12 adjuvanticity. 1996

M A Miller, and M J Skeen, and H K Ziegler
Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA.

The results presented here demonstrate the striking potentiating effects of IL-12 when it is combined with listerial immunogens. Although HKLM alone does not elicit strong T-cell responses, the results presented here demonstrate that the combination of HKLM and IL-12 elicited vigorous Listeria-specific Th1-type T-cell responses when administered intraperitoneally. The intensity of these responses, as well as the cytokine profiles of the Listeria-specific peritoneal T cells and macrophages, was remarkably similar to that of Listeria-infected/immune mice. These studies also revealed that typically nonimmunogenic forms of soluble listerial antigen preparations (cLLO, SLP) and LLO peptide homologs (M. A. Miller et al., manuscript in preparation) elicited intense Listeria-specific T-cell responses when administered with IL-12. In conjunction with the generation of specific T-cell responses following injection of IL-12 in combination with either killed Listeria or soluble listerial antigen preparations, macrophages from these mice expressed upregulated quantities of class II MHC and produced increased amounts of IL-12 following restimulation in vitro. Protection studies established that the Listeria-specific T-cell responses elicited by the HKLM + IL-12 mixture conferred protective immunity of mice to a lethal dose of viable L. monocytogenes. Studies designed to investigate the regulation of IL-12 production by peritoneal macrophages revealed that activated macrophages are particularly sensitive to bacterial products. However, nonviable or replication-incompetent bacteria or bacterial products injected alone were unable to influence the ability of macrophages to produce IL-12. The ability of activated macrophages to respond to HKLM was dramatically upregulated upon addition of IFN-gamma and markedly downregulated in the presence of the Th2 cytokines, IL-4 and IL-10. In light of what is known about the ability of IL-12 to induce IFN-gamma production by NK cells and gamma delta T cells, these results suggest that the exogenous addition of IL-12 may help initiate a cytokine cascade which enables the immune system to interact productively with an antigen that is typically nonimmunogenic when administered alone. These findings demonstrate that IL-12 may prove to be a powerful and broadly useful adjuvant component of particulate and soluble antigen-based vaccines directed towards many types of intracellular pathogenic microorganisms. Studies aimed at determining the generality of these findings in other infectious disease models as well as experiments designed to further elucidate the mechanism(s) of IL-12 adjuvanticity are continuing.

UI MeSH Term Description Entries
D008088 Listeriosis Infections with bacteria of the genus LISTERIA. Listeria Infections,Infections, Listeria,Infection, Listeria,Listeria Infection,Listerioses
D008089 Listeria monocytogenes A species of gram-positive, rod-shaped bacteria widely distributed in nature. It has been isolated from sewage, soil, silage, and from feces of healthy animals and man. Infection with this bacterium leads to encephalitis, meningitis, endocarditis, and abortion.
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008809 Mice, Inbred C3H An inbred strain of mouse that is used as a general purpose strain in a wide variety of RESEARCH areas including CANCER; INFECTIOUS DISEASES; sensorineural, and cardiovascular biology research. Mice, C3H,Mouse, C3H,Mouse, Inbred C3H,C3H Mice,C3H Mice, Inbred,C3H Mouse,C3H Mouse, Inbred,Inbred C3H Mice,Inbred C3H Mouse
D005260 Female Females
D000276 Adjuvants, Immunologic Substances that augment, stimulate, activate, potentiate, or modulate the immune response at either the cellular or humoral level. The classical agents (Freund's adjuvant, BCG, Corynebacterium parvum, et al.) contain bacterial antigens. Some are endogenous (e.g., histamine, interferon, transfer factor, tuftsin, interleukin-1). Their mode of action is either non-specific, resulting in increased immune responsiveness to a wide variety of antigens, or antigen-specific, i.e., affecting a restricted type of immune response to a narrow group of antigens. The therapeutic efficacy of many biological response modifiers is related to their antigen-specific immunoadjuvanticity. Immunoactivators,Immunoadjuvant,Immunoadjuvants,Immunologic Adjuvant,Immunopotentiator,Immunopotentiators,Immunostimulant,Immunostimulants,Adjuvant, Immunologic,Adjuvants, Immunological,Immunologic Adjuvants,Immunological Adjuvant,Adjuvant, Immunological,Immunological Adjuvants
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001428 Bacterial Vaccines Suspensions of attenuated or killed bacteria administered for the prevention or treatment of infectious bacterial disease. Bacterial Vaccine,Bacterin,Vaccine, Bacterial,Vaccines, Bacterial
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte
D014611 Vaccination Administration of vaccines to stimulate the host's immune response. This includes any preparation intended for active immunological prophylaxis. Immunization, Active,Active Immunization,Active Immunizations,Immunizations, Active,Vaccinations

Related Publications

M A Miller, and M J Skeen, and H K Ziegler
May 1982, Nature,
M A Miller, and M J Skeen, and H K Ziegler
September 2012, Journal of medicinal food,
M A Miller, and M J Skeen, and H K Ziegler
November 2007, European journal of immunology,
M A Miller, and M J Skeen, and H K Ziegler
November 2012, Cellular & molecular immunology,
M A Miller, and M J Skeen, and H K Ziegler
November 2013, Microbiology and immunology,
M A Miller, and M J Skeen, and H K Ziegler
March 2007, Journal of immunology (Baltimore, Md. : 1950),
M A Miller, and M J Skeen, and H K Ziegler
April 2010, Microbiology and immunology,
Copied contents to your clipboard!