Intervention strategies to enhance anatomical plasticity and recovery of function after spinal cord injury. 1997

B S Bregman, and P S Diener, and M McAtee, and H N Dai, and C James
Department of Cell Biology, Georgetown University Medical Center, Washington, D.C. 20007, USA.

Taken together, our studies indicate that (a) transplants mediate recovery of skilled forelimb movement as well as locomotor activity, (b) combinations of interventions may be required to restore reflex, sensory, and locomotor function to more normal levels after SCI, and (c) that remodeling of particular pathways may contribute to recovery of rather specific aspects of motor function. In conclusion, we suggest that it seems unlikely that any single intervention strategy will be sufficient to ensure regeneration of damaged pathways and recovery of function after SCI. Clearly, work from a number of laboratories indicates that the dogma that mature CNS neurons are inherently incapable of regeneration of axons after injury is no longer tenable. The issue, rather, is to identify and reverse the conditions that limit regeneration after SCI. After SCI, a hierarchy of "intervention-strategies" may be required to restore suprasegmental control leading to recovery of function. The hierarchy may be both temporal and absolute. For example, early interventions (such as the administration of methylprednisolone within hours of the injury) may be required to interrupt the secondary injury cascade and restrict the extent of damage after SCI. At the injury site itself, interventions to minimize the secondary injury effects may be followed by interventions to alter the environment at the site of injury to provide a terrain conducive to axonal elongation. For example, one might envision strategies to downregulate the expression of molecules that limit growth and upregulate the expression of those that support growth. Early after the injury, axotomized neurons may require neurotrophic support either for their survival or to initiate and maintain a cell body response supporting axonal elongation. There may be an absolute hierarchy as well. Particular populations of neurons may have very specific requirements for regenerative growth. For example, the conditions that enhance the regenerative growth of descending motor pathways may differ from those required by ascending sensory systems. One may also want to design strategies to restrict the plasticity of some pathways (e.g., nociceptive) and enhance the growth in other pathways. The demands on the CNS for anatomic reorganization after SCI may be far less formidable than one might at first imagine. If one assumes that recovery of function will require regenerative growth of large numbers of axons over long distances in a point-to-point topographically specific fashion, the idea of recovery of function becomes daunting. On the other hand, it has been shown in many studies and in many areas of the CNS that as little as 10% of a particular pathway can often subserve substantial function. Furthermore, regrowth over relatively short distances can have major functional consequences. For example, relatively modest changes in the level of SCI can have relatively profound effects on the functional consequences of injury. This is particularly true in cervical SCI: an individual with a C5/6 SCI is dramatically more impaired than one with C7/8 injury. One might envision relatively short distance growth across the injury site to re-establish suprasegmental control. Coupled with strategies to enhance the anatomic and functional reorganization of spinal cord circuitry caudal to the level of the injury, even modest long distance growth may have sufficient functional impact. One might imagine the ability to learn to "use" even modest quantities of novel inputs in functionally useful, appropriate ways.

UI MeSH Term Description Entries
D009068 Movement The act, process, or result of passing from one place or position to another. It differs from LOCOMOTION in that locomotion is restricted to the passing of the whole body from one place to another, while movement encompasses both locomotion but also a change of the position of the whole body or any of its parts. Movement may be used with reference to humans, vertebrate and invertebrate animals, and microorganisms. Differentiate also from MOTOR ACTIVITY, movement associated with behavior. Movements
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords
D013119 Spinal Cord Injuries Penetrating and non-penetrating injuries to the spinal cord resulting from traumatic external forces (e.g., WOUNDS, GUNSHOT; WHIPLASH INJURIES; etc.). Myelopathy, Traumatic,Injuries, Spinal Cord,Post-Traumatic Myelopathy,Spinal Cord Contusion,Spinal Cord Laceration,Spinal Cord Transection,Spinal Cord Trauma,Contusion, Spinal Cord,Contusions, Spinal Cord,Cord Contusion, Spinal,Cord Contusions, Spinal,Cord Injuries, Spinal,Cord Injury, Spinal,Cord Laceration, Spinal,Cord Lacerations, Spinal,Cord Transection, Spinal,Cord Transections, Spinal,Cord Trauma, Spinal,Cord Traumas, Spinal,Injury, Spinal Cord,Laceration, Spinal Cord,Lacerations, Spinal Cord,Myelopathies, Post-Traumatic,Myelopathies, Traumatic,Myelopathy, Post-Traumatic,Post Traumatic Myelopathy,Post-Traumatic Myelopathies,Spinal Cord Contusions,Spinal Cord Injury,Spinal Cord Lacerations,Spinal Cord Transections,Spinal Cord Traumas,Transection, Spinal Cord,Transections, Spinal Cord,Trauma, Spinal Cord,Traumas, Spinal Cord,Traumatic Myelopathies,Traumatic Myelopathy
D016332 Fetal Tissue Transplantation Transference of fetal tissue between individuals of the same species or between individuals of different species. Grafting, Fetal Tissue,Transplantation, Fetal Tissue,Fetal Tissue Donation,Donation, Fetal Tissue,Donations, Fetal Tissue,Fetal Tissue Donations,Fetal Tissue Grafting,Fetal Tissue Graftings,Fetal Tissue Transplantations,Graftings, Fetal Tissue,Tissue Donation, Fetal,Tissue Donations, Fetal,Tissue Grafting, Fetal,Tissue Graftings, Fetal,Tissue Transplantation, Fetal,Tissue Transplantations, Fetal,Transplantations, Fetal Tissue

Related Publications

B S Bregman, and P S Diener, and M McAtee, and H N Dai, and C James
January 1991, Restorative neurology and neuroscience,
B S Bregman, and P S Diener, and M McAtee, and H N Dai, and C James
January 1990, Experimental brain research,
B S Bregman, and P S Diener, and M McAtee, and H N Dai, and C James
August 2020, Scientific reports,
B S Bregman, and P S Diener, and M McAtee, and H N Dai, and C James
December 2010, PM & R : the journal of injury, function, and rehabilitation,
B S Bregman, and P S Diener, and M McAtee, and H N Dai, and C James
January 2011, Progress in brain research,
B S Bregman, and P S Diener, and M McAtee, and H N Dai, and C James
January 1997, Advances in neurology,
B S Bregman, and P S Diener, and M McAtee, and H N Dai, and C James
April 2009, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry,
B S Bregman, and P S Diener, and M McAtee, and H N Dai, and C James
April 2011, Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics,
B S Bregman, and P S Diener, and M McAtee, and H N Dai, and C James
April 2024, Tissue engineering and regenerative medicine,
B S Bregman, and P S Diener, and M McAtee, and H N Dai, and C James
August 2008, Trends in neurosciences,
Copied contents to your clipboard!