Differential regulation of ciliary neurotrophic factor (CNTF) and CNTF receptor alpha expression in astrocytes and neurons of the fascia dentata after entorhinal cortex lesion. 1997

M Y Lee, and T Deller, and M Kirsch, and M Frotscher, and H D Hofmann
Institute of Anatomy, University of Freiburg, Germany.

Neurotrophic factors have been implicated in reactive processes occurring in response to CNS lesions. Ciliary neurotrophic factor (CNTF), in particular, has been shown to ameliorate axotomy-induced degeneration of CNS neurons and to be upregulated at wound sites in the brain. To investigate a potential role of CNTF in lesion-induced degeneration and reorganization, we have analyzed the expression of CNTF protein and CNTF receptor alpha (CNTFR alpha) mRNA in the rat dentate gyrus after unilateral entorhinal cortex lesions (ECLs), using immunocytochemistry and nonradioactive in situ hybridization, respectively. In sham-operated as in normal animals, CNTF protein was not detectable by immunocytochemistry. Starting at 3 d after ECL, upregulation of CNTF expression was observed in the ipsilateral outer molecular layer (OML). Expression was maximal at around day 7, and at this stage immunoreactivity could be specifically localized to astrocytes in the ipsilateral OML. By day 14 postlesion, CNTF immunoreactivity had returned to control levels. CNTFR alpha mRNA was restricted to neurons of the granule cell layer in controls. Three days postlesion, prominent CNTFR alpha expression was observed in the deafferented OML. A similar but less prominent response was noticed in the contralateral OML. After 10 d, CNTFR alpha expression had returned to control levels. Double labeling for CNTFR alpha mRNA and glial fibrillary acidic protein (GFAP) showed that upregulation of CNTFR alpha occurred in reactive, GFAP-immunopositive astrocytes of the OML. A substantial reduction of CNTFR alpha expression in the deafferented granule cells was transiently observed at 7 and 10 d postlesion. Our results suggest a paracrine or autocrine function of CNTF in the regulation of astrocytic and neuronal responses after brain injury.

UI MeSH Term Description Entries
D008297 Male Males
D009414 Nerve Growth Factors Factors which enhance the growth potentialities of sensory and sympathetic nerve cells. Neurite Outgrowth Factor,Neurite Outgrowth Factors,Neuronal Growth-Associated Protein,Neuronotrophic Factor,Neurotrophic Factor,Neurotrophic Factors,Neurotrophin,Neurotrophins,Growth-Associated Proteins, Neuronal,Neuronal Growth-Associated Proteins,Neuronotrophic Factors,Neurotrophic Protein,Neurotrophic Proteins,Proteins, Neuronal Growth-Associated,Factor, Neurite Outgrowth,Factor, Neuronotrophic,Factor, Neurotrophic,Factors, Nerve Growth,Factors, Neurite Outgrowth,Factors, Neuronotrophic,Factors, Neurotrophic,Growth Associated Proteins, Neuronal,Growth-Associated Protein, Neuronal,Neuronal Growth Associated Protein,Neuronal Growth Associated Proteins,Outgrowth Factor, Neurite,Outgrowth Factors, Neurite,Protein, Neuronal Growth-Associated
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001253 Astrocytes A class of large neuroglial (macroglial) cells in the central nervous system - the largest and most numerous neuroglial cells in the brain and spinal cord. Astrocytes (from "star" cells) are irregularly shaped with many long processes, including those with "end feet" which form the glial (limiting) membrane and directly and indirectly contribute to the BLOOD-BRAIN BARRIER. They regulate the extracellular ionic and chemical environment, and "reactive astrocytes" (along with MICROGLIA) respond to injury. Astroglia,Astroglia Cells,Astroglial Cells,Astrocyte,Astroglia Cell,Astroglial Cell,Astroglias,Cell, Astroglia,Cell, Astroglial
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D015854 Up-Regulation A positive regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Up-Regulation,Upregulation,Up-Regulation (Physiology),Up Regulation
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D017475 Receptors, Nerve Growth Factor Cell surface receptors that bind NERVE GROWTH FACTOR; (NGF) and a NGF-related family of neurotrophic factors that includes neurotrophins, BRAIN-DERIVED NEUROTROPHIC FACTOR and CILIARY NEUROTROPHIC FACTOR. NGF Receptors,Nerve Growth Factor Receptors,Neurotrophic Factor Receptor,Neurotrophin Receptor,Receptors, NGF,Receptors, Neurotrophin,Neurotrophin Receptors,Receptors, Neurotrophic Factor,Neurotrophic Factor Receptors,Receptor, Neurotrophic Factor,Receptor, Neurotrophin

Related Publications

M Y Lee, and T Deller, and M Kirsch, and M Frotscher, and H D Hofmann
March 1998, Brain research. Molecular brain research,
M Y Lee, and T Deller, and M Kirsch, and M Frotscher, and H D Hofmann
March 1997, Journal of neurobiology,
M Y Lee, and T Deller, and M Kirsch, and M Frotscher, and H D Hofmann
July 2008, Neuroscience letters,
M Y Lee, and T Deller, and M Kirsch, and M Frotscher, and H D Hofmann
April 2005, Neuroscience letters,
M Y Lee, and T Deller, and M Kirsch, and M Frotscher, and H D Hofmann
January 2003, Hippocampus,
M Y Lee, and T Deller, and M Kirsch, and M Frotscher, and H D Hofmann
November 1981, Neuroscience letters,
M Y Lee, and T Deller, and M Kirsch, and M Frotscher, and H D Hofmann
April 2006, Glia,
M Y Lee, and T Deller, and M Kirsch, and M Frotscher, and H D Hofmann
July 2003, Brain research,
M Y Lee, and T Deller, and M Kirsch, and M Frotscher, and H D Hofmann
April 2001, Journal of the American Society of Nephrology : JASN,
Copied contents to your clipboard!