External barium influences the gating charge movement of Shaker potassium channels. 1997

R S Hurst, and M J Roux, and L Toro, and E Stefani
Department of Anesthesiology, University of California at Los Angeles 90095, USA. raymond@cvmail.anes.ucla.edu

External Ba2+ speeds the OFF gating currents (IgOFF) of Shaker K+ channels but only upon repolarization from potentials that are expected to open the channel pore. To study this effect we used a nonconducting and noninactivating mutant of the Shaker K+ channel, ShH4-IR (W434F). External Ba2+ slightly decreases the quantity of ON gating charge (QON) upon depolarization to potentials near -30 mV but has little effect on the quantity of charge upon stepping to more hyperpolarized or depolarized potentials. More strikingly, Ba2+ significantly increases the decay rate of IgOFF upon repolarization to -90 mV from potentials positive to approximately -55 mV. For Ba2+ to have this effect, the depolarizing command must be maintained for a duration that is dependent on the depolarizing potential (> 4 ms at -30 mV and > 1 ms at 0 mV). The actions of Ba2+ on the gating current are dose-dependent (EC50 approximately 0.2 mM) and are not produced by either Ca2+ or Mg2+ (2 mM). The results suggest that Ba2+ binds to a specific site on the Shaker K+ channel that destabilizes the open conformation and thus facilitates the return of gating charge upon repolarization.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001464 Barium An element of the alkaline earth group of metals. It has an atomic symbol Ba, atomic number 56, and atomic weight 138. All of its acid-soluble salts are poisonous.
D014982 Xenopus laevis The commonest and widest ranging species of the clawed "frog" (Xenopus) in Africa. This species is used extensively in research. There is now a significant population in California derived from escaped laboratory animals. Platanna,X. laevis,Platannas,X. laevi
D015221 Potassium Channels Cell membrane glycoproteins that are selectively permeable to potassium ions. At least eight major groups of K channels exist and they are made up of dozens of different subunits. Ion Channels, Potassium,Ion Channel, Potassium,Potassium Channel,Potassium Ion Channels,Channel, Potassium,Channel, Potassium Ion,Channels, Potassium,Channels, Potassium Ion,Potassium Ion Channel

Related Publications

R S Hurst, and M J Roux, and L Toro, and E Stefani
November 1991, Science (New York, N.Y.),
R S Hurst, and M J Roux, and L Toro, and E Stefani
June 1996, FEBS letters,
R S Hurst, and M J Roux, and L Toro, and E Stefani
December 1995, The Journal of general physiology,
R S Hurst, and M J Roux, and L Toro, and E Stefani
March 1992, Science (New York, N.Y.),
R S Hurst, and M J Roux, and L Toro, and E Stefani
November 1999, The Journal of general physiology,
R S Hurst, and M J Roux, and L Toro, and E Stefani
January 2003, Biophysical journal,
R S Hurst, and M J Roux, and L Toro, and E Stefani
January 2001, The Journal of general physiology,
R S Hurst, and M J Roux, and L Toro, and E Stefani
January 2003, Proceedings of the National Academy of Sciences of the United States of America,
R S Hurst, and M J Roux, and L Toro, and E Stefani
July 2008, Neuron,
R S Hurst, and M J Roux, and L Toro, and E Stefani
January 1990, Cold Spring Harbor symposia on quantitative biology,
Copied contents to your clipboard!