Autoradiographic characterization of rat spinal neuropeptide FF receptors by using [125I][D.Tyr1, (NMe)Phe3]NPFF. 1997

C Gouardères, and J A Tafani, and H Mazarguil, and J M Zajac
Institut de Pharmacologie et de Biologie Structurale, CNRS, Toulouse, France.

The binding properties of neuropeptide FF (NPFF) receptors were investigated in different laminae of the rat spinal cord by using quantitative autoradiography and [125I][D.Tyr1, (NMe)Phe3]NPFF as radioligand. In the superficial layers, the specific binding of [125I][D.Tyr1, (NMe)Phe3]NPFF was time-dependent, reversible, and saturable (KD = 0.1 nM). Preincubation of spinal sections increased the maximal number of [125I][D.Tyr1, (NMe)Phe3]NPFF binding sites. Bestatin, an inhibitor of aminopeptidases, increased significantly the apparent affinity of NPFF. Optimal binding of [125I][D.Tyr1, (NMe)Phe3]NPFF was observed in the presence of 120 mM NaCl in all laminae of the spinal cord. No significant differences were noted in the salt dependence in laminae I-II, IV-V, and X, and the pharmacological profile of [125I][D.Tyr1, (NMe)Phe3]NPFF binding was similar in each laminae. These results do not support the existence of NPFF receptors subtypes differentially localized in different area of the spinal cord. Our data reveal the effects of tissue treatments on binding characteristics of NPFF receptors and indicate that [125I][D.Tyr1, (NMe)Phe3]NPFF is a useful radioactive probe for the characterization of NPFF receptors in discrete brain areas.

UI MeSH Term Description Entries
D007457 Iodine Radioisotopes Unstable isotopes of iodine that decay or disintegrate emitting radiation. I atoms with atomic weights 117-139, except I 127, are radioactive iodine isotopes. Radioisotopes, Iodine
D008297 Male Males
D009292 Narcotic Antagonists Agents inhibiting the effect of narcotics on the central nervous system. Competitive Opioid Antagonist,Narcotic Antagonist,Opioid Antagonist,Opioid Antagonists,Opioid Receptor Antagonist,Opioid Reversal Agent,Competitive Opioid Antagonists,Opioid Receptor Antagonists,Opioid Reversal Agents,Agent, Opioid Reversal,Agents, Opioid Reversal,Antagonist, Competitive Opioid,Antagonist, Narcotic,Antagonist, Opioid,Antagonist, Opioid Receptor,Antagonists, Competitive Opioid,Antagonists, Narcotic,Antagonists, Opioid,Antagonists, Opioid Receptor,Opioid Antagonist, Competitive,Opioid Antagonists, Competitive,Receptor Antagonist, Opioid,Receptor Antagonists, Opioid,Reversal Agent, Opioid,Reversal Agents, Opioid
D009842 Oligopeptides Peptides composed of between two and twelve amino acids. Oligopeptide
D011957 Receptors, Opioid Cell membrane proteins that bind opioids and trigger intracellular changes which influence the behavior of cells. The endogenous ligands for opioid receptors in mammals include three families of peptides, the enkephalins, endorphins, and dynorphins. The receptor classes include mu, delta, and kappa receptors. Sigma receptors bind several psychoactive substances, including certain opioids, but their endogenous ligands are not known. Endorphin Receptors,Enkephalin Receptors,Narcotic Receptors,Opioid Receptors,Receptors, Endorphin,Receptors, Enkephalin,Receptors, Narcotic,Receptors, Opiate,Endorphin Receptor,Enkephalin Receptor,Normorphine Receptors,Opiate Receptor,Opiate Receptors,Opioid Receptor,Receptors, Normorphine,Receptors, beta-Endorphin,beta-Endorphin Receptor,Receptor, Endorphin,Receptor, Enkephalin,Receptor, Opiate,Receptor, Opioid,Receptor, beta-Endorphin,Receptors, beta Endorphin,beta Endorphin Receptor,beta-Endorphin Receptors
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

C Gouardères, and J A Tafani, and H Mazarguil, and J M Zajac
November 1996, Synapse (New York, N.Y.),
C Gouardères, and J A Tafani, and H Mazarguil, and J M Zajac
December 2009, Neurochemistry international,
C Gouardères, and J A Tafani, and H Mazarguil, and J M Zajac
April 2008, Regulatory peptides,
C Gouardères, and J A Tafani, and H Mazarguil, and J M Zajac
January 1994, Brain research,
C Gouardères, and J A Tafani, and H Mazarguil, and J M Zajac
July 2010, Peptides,
C Gouardères, and J A Tafani, and H Mazarguil, and J M Zajac
May 2006, Peptides,
C Gouardères, and J A Tafani, and H Mazarguil, and J M Zajac
March 2015, Epilepsia,
C Gouardères, and J A Tafani, and H Mazarguil, and J M Zajac
July 2020, Domestic animal endocrinology,
Copied contents to your clipboard!