Costimulation of T cell activation by integrin-associated protein (CD47) is an adhesion-dependent, CD28-independent signaling pathway. 1997

M I Reinhold, and F P Lindberg, and G J Kersh, and P M Allen, and E J Brown
Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

The integrin-associated protein (IAP, CD47) is a 50-kD plasma membrane protein with a single extracellular immunoglobulin variable (IgV)-like domain, a multiply membrane-spanning segment, and alternatively spliced short cytoplasmic tails. On neutrophils, IAP has been shown to function in a signaling complex with beta 3 integrins. However, the function of IAP on T cells, which express little or no beta 3 integrin, is not yet defined. Here, we show that mAbs recognizing IAP can enhance proliferation of primary human T cells in the presence of low levels of anti-CD3, but have no effect on T cell proliferation on their own. Together with suboptimal concentrations of anti-CD3, engagement of IAP also enhances IL-2 production in Jurkat cells, an apparently integrin-independent function of IAP. Nonetheless, costimulation by IAP ligation requires cell adhesion. IAP costimulation does not require CD28. Furthermore, anti-IAP, but not anti-CD28, synergizes with suboptimal anti-CD3 to enhance tyrosine phosphorylation of the CD3 zeta chain and the T cell-specific tyrosine kinase Zap70. Ligation of human IAP transfected into the hemoglobin-specific 3.L2 murine T cell hybridoma costimulates activation for IL-2 secretion both with anti-CD3 and with antigenic peptides on antigen-presenting cells (APCs). Moreover, ligation of IAP but not CD28 can convert antagonist peptides into agonists in 3.L2 cells. Using costimulation by IAP ligation as an assay to analyze the structure-function relationships in IAP signaling, we find that both the extracellular and multiply membrane-spanning domains of IAP are necessary for synergy with the antigen receptor, but the alternatively spliced cytoplasmic tails are not. These data demonstrate that IAP ligation initiates an adhesion-dependent costimulatory pathway distinct from CD28. We hypothesize that anti-IAP generates the costimulatory signal because it modulates interactions of the IgV domain with other plasma membrane molecules; this in turn activates effector functions of the multiply membrane-spanning domain of IAP. This model may have general significance for how IAP functions in cell activation.

UI MeSH Term Description Entries
D007376 Interleukin-2 A soluble substance elaborated by antigen- or mitogen-stimulated T-LYMPHOCYTES which induces DNA synthesis in naive lymphocytes. IL-2,Lymphocyte Mitogenic Factor,T-Cell Growth Factor,TCGF,IL2,Interleukin II,Interleukine 2,RU 49637,RU-49637,Ro-23-6019,Ro-236019,T-Cell Stimulating Factor,Thymocyte Stimulating Factor,Interleukin 2,Mitogenic Factor, Lymphocyte,RU49637,Ro 23 6019,Ro 236019,Ro236019,T Cell Growth Factor,T Cell Stimulating Factor
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D011948 Receptors, Antigen, T-Cell Molecules on the surface of T-lymphocytes that recognize and combine with antigens. The receptors are non-covalently associated with a complex of several polypeptides collectively called CD3 antigens (CD3 COMPLEX). Recognition of foreign antigen and the major histocompatibility complex is accomplished by a single heterodimeric antigen-receptor structure, composed of either alpha-beta (RECEPTORS, ANTIGEN, T-CELL, ALPHA-BETA) or gamma-delta (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA) chains. Antigen Receptors, T-Cell,T-Cell Receptors,Receptors, T-Cell Antigen,T-Cell Antigen Receptor,T-Cell Receptor,Antigen Receptor, T-Cell,Antigen Receptors, T Cell,Receptor, T-Cell,Receptor, T-Cell Antigen,Receptors, T Cell Antigen,Receptors, T-Cell,T Cell Antigen Receptor,T Cell Receptor,T Cell Receptors,T-Cell Antigen Receptors
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell

Related Publications

M I Reinhold, and F P Lindberg, and G J Kersh, and P M Allen, and E J Brown
April 2007, Journal of immunology (Baltimore, Md. : 1950),
M I Reinhold, and F P Lindberg, and G J Kersh, and P M Allen, and E J Brown
June 2001, The Journal of clinical investigation,
M I Reinhold, and F P Lindberg, and G J Kersh, and P M Allen, and E J Brown
June 1998, The Journal of experimental medicine,
M I Reinhold, and F P Lindberg, and G J Kersh, and P M Allen, and E J Brown
June 2001, The Journal of clinical investigation,
M I Reinhold, and F P Lindberg, and G J Kersh, and P M Allen, and E J Brown
March 2000, Proceedings of the National Academy of Sciences of the United States of America,
M I Reinhold, and F P Lindberg, and G J Kersh, and P M Allen, and E J Brown
June 1994, Journal of immunology (Baltimore, Md. : 1950),
M I Reinhold, and F P Lindberg, and G J Kersh, and P M Allen, and E J Brown
July 1996, Journal of immunology (Baltimore, Md. : 1950),
M I Reinhold, and F P Lindberg, and G J Kersh, and P M Allen, and E J Brown
December 1995, The Journal of experimental medicine,
M I Reinhold, and F P Lindberg, and G J Kersh, and P M Allen, and E J Brown
March 2001, Blood,
M I Reinhold, and F P Lindberg, and G J Kersh, and P M Allen, and E J Brown
July 2016, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!