A computational model of acute focal cortical lesions. 1997

S Goodall, and J A Reggia, and Y Chen, and E Ruppin, and C Whitney
Department of Neurology, University of Maryland, Baltimore, USA.

OBJECTIVE Determining how cerebral cortex adapts to sudden focal damage is important for gaining a better understanding of stroke. In this study we used a computational model to examine the hypothesis that cortical map reorganization after a simulated infarct is critically dependent on perilesion excitability and to identify factors that influence the extent of poststroke reorganization. METHODS A previously reported artificial neural network model of primary sensorimotor cortex, controlling a simulated arm, was subjected to acute focal damage. The perilesion excitability and cortical map reorganization were measured over time and compared. RESULTS Simulated lesions to cortical regions with increased perilesion excitability were associated with a remapping of the lesioned area into the immediate perilesion cortex, where responsiveness increased with time. In contrast, when lesions caused a perilesion zone of decreased activity to appear, this zone enlarged and intensified with time, with loss of the perilesion map. Increasing the assumed extent of intracortical connections produced a wider perilesion zone of inactivity. These effects were independent of lesion size. CONCLUSIONS These simulation results suggest that functional cortical reorganization after an ischemic stroke is a two-phase process in which perilesion excitability plays a critical role.

UI MeSH Term Description Entries
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009415 Nerve Net A meshlike structure composed of interconnecting nerve cells that are separated at the synaptic junction or joined to one another by cytoplasmic processes. In invertebrates, for example, the nerve net allows nerve impulses to spread over a wide area of the net because synapses can pass information in any direction. Neural Networks (Anatomic),Nerve Nets,Net, Nerve,Nets, Nerve,Network, Neural (Anatomic),Networks, Neural (Anatomic),Neural Network (Anatomic)
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D011434 Proprioception Sensory functions that transduce stimuli received by proprioceptive receptors in joints, tendons, muscles, and the INNER EAR into neural impulses to be transmitted to the CENTRAL NERVOUS SYSTEM. Proprioception provides sense of stationary positions and movements of one's body parts, and is important in maintaining KINESTHESIA and POSTURAL BALANCE. Labyrinthine Sense,Position Sense,Posture Sense,Sense of Equilibrium,Vestibular Sense,Sense of Position,Equilibrium Sense,Sense, Labyrinthine,Sense, Position,Sense, Posture,Sense, Vestibular
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D002546 Ischemic Attack, Transient Brief reversible episodes of focal, nonconvulsive ischemic dysfunction of the brain having a duration of less than 24 hours, and usually less than one hour, caused by transient thrombotic or embolic blood vessel occlusion or stenosis. Events may be classified by arterial distribution, temporal pattern, or etiology (e.g., embolic vs. thrombotic). (From Adams et al., Principles of Neurology, 6th ed, pp814-6) Brain Stem Ischemia, Transient,Cerebral Ischemia, Transient,Crescendo Transient Ischemic Attacks,Transient Ischemic Attack,Anterior Circulation Transient Ischemic Attack,Brain Stem Transient Ischemic Attack,Brain TIA,Brainstem Ischemia, Transient,Brainstem Transient Ischemic Attack,Carotid Circulation Transient Ischemic Attack,Posterior Circulation Transient Ischemic Attack,TIA (Transient Ischemic Attack),Transient Ischemic Attack, Anterior Circulation,Transient Ischemic Attack, Brain Stem,Transient Ischemic Attack, Brainstem,Transient Ischemic Attack, Carotid Circulation,Transient Ischemic Attack, Posterior Circulation,Transient Ischemic Attack, Vertebrobasilar Circulation,Transient Ischemic Attacks, Crescendo,Vertebrobasilar Circulation Transient Ischemic Attack,Attack, Transient Ischemic,Attacks, Transient Ischemic,Brainstem Ischemias, Transient,Cerebral Ischemias, Transient,Ischemia, Transient Brainstem,Ischemia, Transient Cerebral,Ischemias, Transient Brainstem,Ischemias, Transient Cerebral,Ischemic Attacks, Transient,TIA, Brain,TIAs (Transient Ischemic Attack),Transient Brainstem Ischemia,Transient Cerebral Ischemia,Transient Cerebral Ischemias,Transient Ischemic Attacks
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

S Goodall, and J A Reggia, and Y Chen, and E Ruppin, and C Whitney
January 1985, Neuropsychologia,
S Goodall, and J A Reggia, and Y Chen, and E Ruppin, and C Whitney
August 2003, NeuroImage,
S Goodall, and J A Reggia, and Y Chen, and E Ruppin, and C Whitney
October 1982, Science (New York, N.Y.),
S Goodall, and J A Reggia, and Y Chen, and E Ruppin, and C Whitney
January 1987, Rays,
S Goodall, and J A Reggia, and Y Chen, and E Ruppin, and C Whitney
January 1985, Neuropsychologia,
S Goodall, and J A Reggia, and Y Chen, and E Ruppin, and C Whitney
August 1982, Journal of neurosurgery,
S Goodall, and J A Reggia, and Y Chen, and E Ruppin, and C Whitney
January 2005, Biological cybernetics,
S Goodall, and J A Reggia, and Y Chen, and E Ruppin, and C Whitney
December 2001, International journal of psychophysiology : official journal of the International Organization of Psychophysiology,
S Goodall, and J A Reggia, and Y Chen, and E Ruppin, and C Whitney
March 2015, Journal of molecular neuroscience : MN,
S Goodall, and J A Reggia, and Y Chen, and E Ruppin, and C Whitney
February 2013, Journal of neuropathology and experimental neurology,
Copied contents to your clipboard!