Extracellular potassium in a neocortical core area after transient focal ischemia. 1997

G Gidö, and T Kristián, and B K Siesjö
Laboratory for Experimental Brain Research, University Hospital, Lund, Sweden. gunilla.gido@eforsk.lu.se

OBJECTIVE Occlusion of the middle cerebral artery (MCAO) results in bioenergetic failure in the densely ischemic core areas. During reperfusion, transient recovery of the bioenergetic state is followed by secondary deterioration. In this study, we recorded the extracellular potassium concentrations in the cortical core during 2 hours of MCAO, as well as during recovery. One group of animals with recirculation periods of 6 to 8 hours was given the free radical spin trap alpha-phenyl-N-tert-butyl nitrone (PBN). METHODS The experiments were performed on adult male Wistar rats (305 to 335 g). The right MCA was occluded by an intraluminal filament technique. For [K+]e measurements a craniotomy was made over the right cortex, and an ion-sensitive microelectrode was lowered into the ischemic focus. Recording of [K+]e was continued for 2 hours. After 48 hours of reperfusion, infarction size was estimated with 2,3,5-triphenyltetrazolium chloride. RESULTS During MCA occlusion, [K+]e rose to approximately 60 mmol/L. However, several animals showed transient (and partial) periods of repolarization accompanied by a decrease in [K+]e. Immediately on reperfusion, the [K+]e started to recover and reached baseline levels (2.5 mmol/L) within 3 to 5 minutes. During the first 6 hours of recovery, [K+]e was stable at about 2.5 mmol/L, but after this period a moderate increase in the [K+]e was observed. This was not observed in animals injected with PBN 1 hour after reperfusion. CONCLUSIONS The data suggest that delayed cell membrane dysfunction, as reflected in a rise in [K+]e, occurs after about 6 hours of reperfusion and that treatment with PBN in a single dose ameliorates or delays such deterioration of plasma membrane function.

UI MeSH Term Description Entries
D008297 Male Males
D008839 Microelectrodes Electrodes with an extremely small tip, used in a voltage clamp or other apparatus to stimulate or record bioelectric potentials of single cells intracellularly or extracellularly. (Dorland, 28th ed) Electrodes, Miniaturized,Electrode, Miniaturized,Microelectrode,Miniaturized Electrode,Miniaturized Electrodes
D009589 Nitrogen Oxides Inorganic oxides that contain nitrogen. Nitrogen Oxide,Oxide, Nitrogen,Oxides, Nitrogen
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D001831 Body Temperature The measure of the level of heat of a human or animal. Organ Temperature,Body Temperatures,Organ Temperatures,Temperature, Body,Temperature, Organ,Temperatures, Body,Temperatures, Organ
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D002544 Cerebral Infarction The formation of an area of NECROSIS in the CEREBRUM caused by an insufficiency of arterial or venous blood flow. Infarcts of the cerebrum are generally classified by hemisphere (i.e., left vs. right), lobe (e.g., frontal lobe infarction), arterial distribution (e.g., INFARCTION, ANTERIOR CEREBRAL ARTERY), and etiology (e.g., embolic infarction). Anterior Choroidal Artery Infarction,Cerebral Infarct,Infarction, Cerebral,Posterior Choroidal Artery Infarction,Subcortical Infarction,Cerebral Infarction, Left Hemisphere,Cerebral Infarction, Right Hemisphere,Cerebral, Left Hemisphere, Infarction,Cerebral, Right Hemisphere, Infarction,Infarction, Cerebral, Left Hemisphere,Infarction, Cerebral, Right Hemisphere,Infarction, Left Hemisphere, Cerebral,Infarction, Right Hemisphere, Cerebral,Left Hemisphere, Cerebral Infarction,Left Hemisphere, Infarction, Cerebral,Right Hemisphere, Cerebral Infarction,Right Hemisphere, Infarction, Cerebral,Cerebral Infarctions,Cerebral Infarcts,Infarct, Cerebral,Infarction, Subcortical,Infarctions, Cerebral,Infarctions, Subcortical,Infarcts, Cerebral,Subcortical Infarctions
D002546 Ischemic Attack, Transient Brief reversible episodes of focal, nonconvulsive ischemic dysfunction of the brain having a duration of less than 24 hours, and usually less than one hour, caused by transient thrombotic or embolic blood vessel occlusion or stenosis. Events may be classified by arterial distribution, temporal pattern, or etiology (e.g., embolic vs. thrombotic). (From Adams et al., Principles of Neurology, 6th ed, pp814-6) Brain Stem Ischemia, Transient,Cerebral Ischemia, Transient,Crescendo Transient Ischemic Attacks,Transient Ischemic Attack,Anterior Circulation Transient Ischemic Attack,Brain Stem Transient Ischemic Attack,Brain TIA,Brainstem Ischemia, Transient,Brainstem Transient Ischemic Attack,Carotid Circulation Transient Ischemic Attack,Posterior Circulation Transient Ischemic Attack,TIA (Transient Ischemic Attack),Transient Ischemic Attack, Anterior Circulation,Transient Ischemic Attack, Brain Stem,Transient Ischemic Attack, Brainstem,Transient Ischemic Attack, Carotid Circulation,Transient Ischemic Attack, Posterior Circulation,Transient Ischemic Attack, Vertebrobasilar Circulation,Transient Ischemic Attacks, Crescendo,Vertebrobasilar Circulation Transient Ischemic Attack,Attack, Transient Ischemic,Attacks, Transient Ischemic,Brainstem Ischemias, Transient,Cerebral Ischemias, Transient,Ischemia, Transient Brainstem,Ischemia, Transient Cerebral,Ischemias, Transient Brainstem,Ischemias, Transient Cerebral,Ischemic Attacks, Transient,TIA, Brain,TIAs (Transient Ischemic Attack),Transient Brainstem Ischemia,Transient Cerebral Ischemia,Transient Cerebral Ischemias,Transient Ischemic Attacks

Related Publications

G Gidö, and T Kristián, and B K Siesjö
November 1977, Headache,
G Gidö, and T Kristián, and B K Siesjö
November 2008, Brain research,
G Gidö, and T Kristián, and B K Siesjö
June 2009, Journal of molecular neuroscience : MN,
G Gidö, and T Kristián, and B K Siesjö
January 1997, Brain research bulletin,
G Gidö, and T Kristián, and B K Siesjö
January 1990, Neuroscience,
G Gidö, and T Kristián, and B K Siesjö
January 2002, Neuroscience,
G Gidö, and T Kristián, and B K Siesjö
October 2006, Neuroscience letters,
Copied contents to your clipboard!