Expression of the APP gene family in brain cells, brain development and aging. 1997

R Sandbrink, and U Mönning, and C L Masters, and K Beyreuther
Center for Molecular Biology Heidelberg (ZMBH), University of Heidelberg, Germany.

The Alzheimer's beta A4-amyloid protein precursor (APP) and the APP-like proteins (APLPs) are transmembrane glycoproteins with a similar modular domain structure. Alternatively spliced exons found in both genes comprise a Kunitz protease inhibitor domain encoding exon, and another exon within the divergent regions adjacent to the transmembrane domain, i.e. exon 15 of the APP gene and an exon encoding 12 residues in APLP2. Omission of the latter exons in L-APP and L-APLP2 isoforms, respectively, generates a functional recognition sequence for xylosyltransferase-mediated addition of glycosaminoglycans and proteoglycan formation. In this paper, we summarize our analyses of the regulated expression of these alternatively spliced exons in APP and APLP2 in primary cultured rat brain cells, rat brain development and aging. In conjunction with additional data for the human brain, these data provide important clues for understanding the functional significance of alternative splicing and glycosylation in APP biology. On the basis of recent results showing a higher amyloidogenicity of exon 15 encoding APP than L-APP isoforms, we further discuss the potential significance of the low levels of L-APP in neurons for the susceptibility of the brain towards Alzheimer's disease.

UI MeSH Term Description Entries
D007536 Isomerism The phenomenon whereby certain chemical compounds have structures that are different although the compounds possess the same elemental composition. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Isomerisms
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D005810 Multigene Family A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed) Gene Clusters,Genes, Reiterated,Cluster, Gene,Clusters, Gene,Families, Multigene,Family, Multigene,Gene Cluster,Gene, Reiterated,Multigene Families,Reiterated Gene,Reiterated Genes
D006031 Glycosylation The synthetic chemistry reaction or enzymatic reaction of adding carbohydrate or glycosyl groups. GLYCOSYLTRANSFERASES carry out the enzymatic glycosylation reactions. The spontaneous, non-enzymatic attachment of reducing sugars to free amino groups in proteins, lipids, or nucleic acids is called GLYCATION (see MAILLARD REACTION). Protein Glycosylation,Glycosylation, Protein

Related Publications

R Sandbrink, and U Mönning, and C L Masters, and K Beyreuther
March 2020, Scientific reports,
R Sandbrink, and U Mönning, and C L Masters, and K Beyreuther
December 2001, Biochemical and biophysical research communications,
R Sandbrink, and U Mönning, and C L Masters, and K Beyreuther
November 1998, Biochemical and biophysical research communications,
R Sandbrink, and U Mönning, and C L Masters, and K Beyreuther
September 2005, PLoS biology,
R Sandbrink, and U Mönning, and C L Masters, and K Beyreuther
September 1993, Annals of the New York Academy of Sciences,
R Sandbrink, and U Mönning, and C L Masters, and K Beyreuther
October 2018, Neurobiology of aging,
R Sandbrink, and U Mönning, and C L Masters, and K Beyreuther
April 2012, Neurochemistry international,
R Sandbrink, and U Mönning, and C L Masters, and K Beyreuther
January 2005, Neurochemical research,
R Sandbrink, and U Mönning, and C L Masters, and K Beyreuther
November 2002, Archives of neurology,
R Sandbrink, and U Mönning, and C L Masters, and K Beyreuther
June 2023, Scientific reports,
Copied contents to your clipboard!