Diurnal rhythms and effects of fasting and refeeding on rat adipose tissue lipoprotein lipase. 1996

M Bergö, and G Olivecrona, and T Olivecrona
Department of Medical Biochemistry and Biophysics, Umeå University, Sweden.

The activity of lipoprotein lipase (LPL) in adipose tissue is modulated by changes in the nutritional status. We have measured LPL activity, mass, and mRNA levels in rat adipose tissue during normal feeding cycles, during short- and long-term fasting, and during refeeding after fasting. LPL activity displayed a diurnal rhythm. The activity was highest during the night and early morning, decreased to a minimum during the early afternoon, and then increased again. These changes corresponded to the feeding pattern. The increases and/or decreases resulted from changes in LPL synthetic rate compounded by posttranslational mechanisms. During short-term fasting, LPL specific activity decreased to < 30% of control. The specific activity was restored within 4 h by refeeding. On longer fasting, LPL mRNA decreased. This became significant from 36 h. On refeeding, it took 12 h to restore the mRNA levels, whereas tissue LPL activity and mass could not be fully restored by 36 h of refeeding. These data show that LPL activity during short-term fasting is regulated posttranscriptionally, which allows for quick upregulation after refeeding. On longer fasting, other mechanisms affecting LPL transcription and synthesis come into play, and upregulation after refeeding is slowed down.

UI MeSH Term Description Entries
D008071 Lipoprotein Lipase An enzyme of the hydrolase class that catalyzes the reaction of triacylglycerol and water to yield diacylglycerol and a fatty acid anion. The enzyme hydrolyzes triacylglycerols in chylomicrons, very-low-density lipoproteins, low-density lipoproteins, and diacylglycerols. It occurs on capillary endothelial surfaces, especially in mammary, muscle, and adipose tissue. Genetic deficiency of the enzyme causes familial hyperlipoproteinemia Type I. (Dorland, 27th ed) EC 3.1.1.34. Heparin-Clearing Factor,Lipemia-Clearing Factor,Diacylglycerol Lipase,Diglyceride Lipase,Post-Heparin Lipase,Postheparin Lipase,Postheparin Lipoprotein Lipase,Factor, Heparin-Clearing,Factor, Lipemia-Clearing,Heparin Clearing Factor,Lipase, Diacylglycerol,Lipase, Diglyceride,Lipase, Lipoprotein,Lipase, Post-Heparin,Lipase, Postheparin,Lipase, Postheparin Lipoprotein,Lipemia Clearing Factor,Lipoprotein Lipase, Postheparin,Post Heparin Lipase
D008297 Male Males
D002940 Circadian Rhythm The regular recurrence, in cycles of about 24 hours, of biological processes or activities, such as sensitivity to drugs or environmental and physiological stimuli. Diurnal Rhythm,Nyctohemeral Rhythm,Twenty-Four Hour Rhythm,Nycthemeral Rhythm,Circadian Rhythms,Diurnal Rhythms,Nycthemeral Rhythms,Nyctohemeral Rhythms,Rhythm, Circadian,Rhythm, Diurnal,Rhythm, Nycthemeral,Rhythm, Nyctohemeral,Rhythm, Twenty-Four Hour,Rhythms, Circadian,Rhythms, Diurnal,Rhythms, Nycthemeral,Rhythms, Nyctohemeral,Rhythms, Twenty-Four Hour,Twenty Four Hour Rhythm,Twenty-Four Hour Rhythms
D005215 Fasting Abstaining from FOOD. Hunger Strike,Hunger Strikes,Strike, Hunger,Strikes, Hunger
D000273 Adipose Tissue Specialized connective tissue composed of fat cells (ADIPOCYTES). It is the site of stored FATS, usually in the form of TRIGLYCERIDES. In mammals, there are two types of adipose tissue, the WHITE FAT and the BROWN FAT. Their relative distributions vary in different species with most adipose tissue being white. Fatty Tissue,Body Fat,Fat Pad,Fat Pads,Pad, Fat,Pads, Fat,Tissue, Adipose,Tissue, Fatty
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

M Bergö, and G Olivecrona, and T Olivecrona
November 2001, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas,
M Bergö, and G Olivecrona, and T Olivecrona
May 1989, The American journal of physiology,
M Bergö, and G Olivecrona, and T Olivecrona
January 1995, The Japanese journal of physiology,
M Bergö, and G Olivecrona, and T Olivecrona
September 1973, FEBS letters,
M Bergö, and G Olivecrona, and T Olivecrona
September 1955, Biochimica et biophysica acta,
M Bergö, and G Olivecrona, and T Olivecrona
March 1985, Biochimica et biophysica acta,
M Bergö, and G Olivecrona, and T Olivecrona
March 1962, Metabolism: clinical and experimental,
Copied contents to your clipboard!