Differences in isoproterenol stimulation of Ca2+ current of rat ventricular myocytes in neonatal compared to adult. 1996

Y Katsube, and H Yokoshiki, and L Nguyen, and N Sperelakis
Department of Molecular and Cellular Physiology, College of Medicine, University of Cincinnati, OH 45267-0576, USA.

The developmental changes in the isoproterenol stimulation of the L-type calcium current (ICa(L)) were studied in freshly isolated neonatal (3-5-day-old) and adult (2-3-month-old) rat ventricular myocytes using whole-cell voltage clamp (at room temperature). ICa(L) was measured as the peak inward current at a test potential of +10 mV (or +20 mV) by applying a 300 ms pulse from a holding potential of -40 mV. The pipette solution was Cs(+)-rich and Ca(2+)-free. The external solution was Na(+)-free and K(+)-free. Isoproterenol stimulated ICa(L) in a dose-dependent manner. The concentrations of isoproterenol for half-maximal effect were 6.8 nM in neonatal and 13.3 nM in adult. The maximal stimulation of ICa(L) was 147 +/- 14% in neonatal and 97 +/- 7% in adult. The steady-state inactivation curves were not affected by isoproterenol, whereas the steady-state activation curve was shifted to the left in both neonatal and adult. Forskolin (10 microM) increased ICa(L) by 105 +/- 10% in neonatal and 90 +/- 12% in adult. After stimulating ICa(L) by forskolin, the addition of isoproterenol produced a further increase of ICa(L) by 99 +/- 27% in neonatal, but only by 19 +/- 3% in adult. The presence of an inhibitor of cAMP-dependent protein kinase in the pipette did not affect this marked difference between neonatal (87 +/- 23%) and adult (11 +/- 8%). We conclude that, in rat ventricular myocytes, (1) stimulation of ICa(L) by the beta-adrenoceptor agonist, isoproterenol, is already fully developed in the neonatal stage and actually decreases during development; (2) there is evidence for a cAMP-independent stimulation of Ca2+ channels by isoproterenol, and this is greater in neonatal than in adult. We believe that the cAMP-independent pathway is the direct pathway mediated by Gs alpha protein.

UI MeSH Term Description Entries
D007545 Isoproterenol Isopropyl analog of EPINEPHRINE; beta-sympathomimetic that acts on the heart, bronchi, skeletal muscle, alimentary tract, etc. It is used mainly as bronchodilator and heart stimulant. Isoprenaline,Isopropylarterenol,4-(1-Hydroxy-2-((1-methylethyl)amino)ethyl)-1,2-benzenediol,Euspiran,Isadrin,Isadrine,Isopropyl Noradrenaline,Isopropylnoradrenaline,Isopropylnorepinephrine,Isoproterenol Hydrochloride,Isoproterenol Sulfate,Isuprel,Izadrin,Norisodrine,Novodrin,Hydrochloride, Isoproterenol,Noradrenaline, Isopropyl,Sulfate, Isoproterenol
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D002120 Calcium Channel Agonists Agents that increase calcium influx into calcium channels of excitable tissues. This causes vasoconstriction in VASCULAR SMOOTH MUSCLE and/or CARDIAC MUSCLE cells as well as stimulation of insulin release from pancreatic islets. Therefore, tissue-selective calcium agonists have the potential to combat cardiac failure and endocrinological disorders. They have been used primarily in experimental studies in cell and tissue culture. Calcium Channel Activators,Calcium Channel Agonists, Exogenous,Calcium Channel Agonist,Exogenous Calcium Channel Agonists,Activators, Calcium Channel,Agonist, Calcium Channel,Agonists, Calcium Channel,Channel Activators, Calcium,Channel Agonist, Calcium,Channel Agonists, Calcium
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D005576 Colforsin Potent activator of the adenylate cyclase system and the biosynthesis of cyclic AMP. From the plant COLEUS FORSKOHLII. Has antihypertensive, positive inotropic, platelet aggregation inhibitory, and smooth muscle relaxant activities; also lowers intraocular pressure and promotes release of hormones from the pituitary gland. Coleonol,Forskolin,N,N-Dimethyl-beta-alanine-5-(acetyloxy)-3-ethenyldodecahydro-10,10b-dihydroxy-3,4a,7,7,10a-pentamethyl-1-oxo-1H-naphtho(2,1-b)pyran-6-yl Ester HCl,NKH 477,NKH-477,NKH477
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D000318 Adrenergic beta-Agonists Drugs that selectively bind to and activate beta-adrenergic receptors. Adrenergic beta-Receptor Agonists,beta-Adrenergic Agonists,beta-Adrenergic Receptor Agonists,Adrenergic beta-Agonist,Adrenergic beta-Receptor Agonist,Betamimetics,Receptor Agonists, beta-Adrenergic,Receptors Agonists, Adrenergic beta,beta-Adrenergic Agonist,beta-Adrenergic Receptor Agonist,Adrenergic beta Agonist,Adrenergic beta Agonists,Adrenergic beta Receptor Agonist,Adrenergic beta Receptor Agonists,Agonist, Adrenergic beta-Receptor,Agonist, beta-Adrenergic,Agonist, beta-Adrenergic Receptor,Agonists, Adrenergic beta-Receptor,Agonists, beta-Adrenergic,Agonists, beta-Adrenergic Receptor,Receptor Agonist, beta-Adrenergic,Receptor Agonists, beta Adrenergic,beta Adrenergic Agonist,beta Adrenergic Agonists,beta Adrenergic Receptor Agonist,beta Adrenergic Receptor Agonists,beta-Agonist, Adrenergic,beta-Agonists, Adrenergic,beta-Receptor Agonist, Adrenergic,beta-Receptor Agonists, Adrenergic
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Y Katsube, and H Yokoshiki, and L Nguyen, and N Sperelakis
December 1991, The American journal of physiology,
Y Katsube, and H Yokoshiki, and L Nguyen, and N Sperelakis
October 1998, Journal of molecular and cellular cardiology,
Y Katsube, and H Yokoshiki, and L Nguyen, and N Sperelakis
October 1987, The Journal of physiology,
Y Katsube, and H Yokoshiki, and L Nguyen, and N Sperelakis
January 2022, Physiological reports,
Y Katsube, and H Yokoshiki, and L Nguyen, and N Sperelakis
March 1988, Proceedings of the National Academy of Sciences of the United States of America,
Y Katsube, and H Yokoshiki, and L Nguyen, and N Sperelakis
June 1998, Cardiovascular research,
Y Katsube, and H Yokoshiki, and L Nguyen, and N Sperelakis
April 1993, The American journal of physiology,
Y Katsube, and H Yokoshiki, and L Nguyen, and N Sperelakis
April 1997, The Journal of physiology,
Y Katsube, and H Yokoshiki, and L Nguyen, and N Sperelakis
July 1998, Journal of cardiovascular electrophysiology,
Y Katsube, and H Yokoshiki, and L Nguyen, and N Sperelakis
February 1985, The American journal of physiology,
Copied contents to your clipboard!