High-density lipoprotein inhibits the synthesis of platelet-activating factor in human vascular endothelial cells. 1996

J Sugatani, and M Miwa, and Y Komiyama, and S Ito
Department of Medical Chemistry, Kansai Medical University, Osaka, Japan.

The regulation of platelet-activating factor (PAF) synthesis by serum lipoproteins was investigated in human umbilical vein endothelial cells. High-density lipoprotein (HDL) inhibited PAF synthesis in agonist (thrombin, histamine, and A23187)-stimulated endothelial cells, that was determined by incorporation of [3H]acetate into PAF and by bioassay. The inhibition by HDL was increased in a concentration-dependent manner, but was reversed as the concentration of thrombin increased. HDL did not affect the time course of PAF production. HDL lipids suppressed the PAF production to a lesser extent than HDL. The reduction of PAF accumulation in HDL, did not result from degradation of PAF but inhibition of PAF synthesis, which was mainly mediated via the blockade of acetyl-CoA:1-alkyl-2-lyso-sn-glycero-3-phosphocholine acetyltransferase activation. HDL did not prevent the release of [3H]arachidonic acid in thrombin-stimulated endothelial cells. The binding of 125I-HDL to endothelial cells and its uptake were not enhanced by thrombin stimulation. These results demonstrate that HDL may inhibit the activation of acetyltransferase by thrombin at the cell surface. This observation may explain a part of mechanism of HDL action.

UI MeSH Term Description Entries
D008075 Lipoproteins, HDL A class of lipoproteins of small size (4-13 nm) and dense (greater than 1.063 g/ml) particles. HDL lipoproteins, synthesized in the liver without a lipid core, accumulate cholesterol esters from peripheral tissues and transport them to the liver for re-utilization or elimination from the body (the reverse cholesterol transport). Their major protein component is APOLIPOPROTEIN A-I. HDL also shuttle APOLIPOPROTEINS C and APOLIPOPROTEINS E to and from triglyceride-rich lipoproteins during their catabolism. HDL plasma level has been inversely correlated with the risk of cardiovascular diseases. High Density Lipoprotein,High-Density Lipoprotein,High-Density Lipoproteins,alpha-Lipoprotein,alpha-Lipoproteins,Heavy Lipoproteins,alpha-1 Lipoprotein,Density Lipoprotein, High,HDL Lipoproteins,High Density Lipoproteins,Lipoprotein, High Density,Lipoprotein, High-Density,Lipoproteins, Heavy,Lipoproteins, High-Density,alpha Lipoprotein,alpha Lipoproteins
D008077 Lipoproteins, LDL A class of lipoproteins of small size (18-25 nm) and light (1.019-1.063 g/ml) particles with a core composed mainly of CHOLESTEROL ESTERS and smaller amounts of TRIGLYCERIDES. The surface monolayer consists mostly of PHOSPHOLIPIDS, a single copy of APOLIPOPROTEIN B-100, and free cholesterol molecules. The main LDL function is to transport cholesterol and cholesterol esters to extrahepatic tissues. Low-Density Lipoprotein,Low-Density Lipoproteins,beta-Lipoprotein,beta-Lipoproteins,LDL(1),LDL(2),LDL-1,LDL-2,LDL1,LDL2,Low-Density Lipoprotein 1,Low-Density Lipoprotein 2,LDL Lipoproteins,Lipoprotein, Low-Density,Lipoproteins, Low-Density,Low Density Lipoprotein,Low Density Lipoprotein 1,Low Density Lipoprotein 2,Low Density Lipoproteins,beta Lipoprotein,beta Lipoproteins
D010741 Phospholipases A Phospholipases that hydrolyze one of the acyl groups of phosphoglycerides or glycerophosphatidates.
D010972 Platelet Activating Factor A phospholipid derivative formed by PLATELETS; BASOPHILS; NEUTROPHILS; MONOCYTES; and MACROPHAGES. It is a potent platelet aggregating agent and inducer of systemic anaphylactic symptoms, including HYPOTENSION; THROMBOCYTOPENIA; NEUTROPENIA; and BRONCHOCONSTRICTION. AGEPC,Acetyl Glyceryl Ether Phosphorylcholine,PAF-Acether,Phosphorylcholine, Acetyl Glyceryl Ether,1-Alkyl-2-acetyl-sn-glycerophosphocholine,Platelet Aggregating Factor,Platelet Aggregation Enhancing Factor,Platelet-Activating Substance,Thrombocyte Aggregating Activity,1 Alkyl 2 acetyl sn glycerophosphocholine,Aggregating Factor, Platelet,Factor, Platelet Activating,PAF Acether,Platelet Activating Substance
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D006632 Histamine An amine derived by enzymatic decarboxylation of HISTIDINE. It is a powerful stimulant of gastric secretion, a constrictor of bronchial smooth muscle, a vasodilator, and also a centrally acting neurotransmitter. Ceplene,Histamine Dihydrochloride,Histamine Hydrochloride,Peremin
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

J Sugatani, and M Miwa, and Y Komiyama, and S Ito
February 1994, The Journal of laboratory and clinical medicine,
J Sugatani, and M Miwa, and Y Komiyama, and S Ito
July 1992, Biochemical pharmacology,
J Sugatani, and M Miwa, and Y Komiyama, and S Ito
January 1993, Drugs,
J Sugatani, and M Miwa, and Y Komiyama, and S Ito
March 1988, Chest,
J Sugatani, and M Miwa, and Y Komiyama, and S Ito
September 1999, American journal of hypertension,
J Sugatani, and M Miwa, and Y Komiyama, and S Ito
September 2003, Clinical and experimental pharmacology & physiology,
Copied contents to your clipboard!