Depletion of intracellular calcium stores activates smooth muscle cell calcium-independent phospholipase A2. A novel mechanism underlying arachidonic acid mobilization. 1997

M J Wolf, and J Wang, and J Turk, and R W Gross
Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

Herein we present multiple lines of evidence which demonstrate that depletion of internal calcium stores is both necessary and sufficient for the activation of calcium-independent phospholipase A2 during arginine vasopressin (AVP)-mediated mobilization of arachidonic acid in A-10 smooth muscle cells. First, AVP-induced [3H]arachidonic acid release was independent of increases in cytosolic calcium yet was decreased by pharmacological inhibition of the release of calcium ion from internal stores. Second, thapsigargin induced the dramatic release of [3H]arachidonic acid from A-10 cells at a similar rate as the AVP-induced release of arachidonic acid, and the release of arachidonic acid by either AVP or thapsigargin was entirely inhibited by (E)-6-(bromomethylene)-3-(1-naphthalenyl)-2H-tetrahydropyran-2-one (BEL). Third, the magnitude of thapsigargin-induced [3H]arachidonic acid release was entirely independent of alterations in cytosolic calcium concentration. Fourth, A23187 resulted in the BEL-inhibitable release of [3H]arachidonic acid from A-10 cells even when ionophore-induced increases in cytosolic calcium were completely prevented by calcium chelators. Fifth, pretreatment of A-10 cells with a calmodulin antagonist (N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide, HCl) resulted in the time-dependent decrease of subsequent thapsigargin-induced [3H]arachidonic acid release. Collectively, these results identify a novel paradigm which links alterations in calcium homeostasis to the calmodulin-mediated regulation of calcium-independent phospholipase A2 through the depletion of internal calcium stores.

UI MeSH Term Description Entries
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D010741 Phospholipases A Phospholipases that hydrolyze one of the acyl groups of phosphoglycerides or glycerophosphatidates.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002614 Chelating Agents Chemicals that bind to and remove ions from solutions. Many chelating agents function through the formation of COORDINATION COMPLEXES with METALS. Chelating Agent,Chelator,Complexons,Metal Antagonists,Chelators,Metal Chelating Agents,Agent, Chelating,Agents, Chelating,Agents, Metal Chelating,Antagonists, Metal,Chelating Agents, Metal
D004533 Egtazic Acid A chelating agent relatively more specific for calcium and less toxic than EDETIC ACID. EGTA,Ethylene Glycol Tetraacetic Acid,EGATA,Egtazic Acid Disodium Salt,Egtazic Acid Potassium Salt,Egtazic Acid Sodium Salt,Ethylene Glycol Bis(2-aminoethyl ether)tetraacetic Acid,Ethylenebis(oxyethylenenitrile)tetraacetic Acid,GEDTA,Glycoletherdiamine-N,N,N',N'-tetraacetic Acid,Magnesium-EGTA,Tetrasodium EGTA,Acid, Egtazic,EGTA, Tetrasodium,Magnesium EGTA
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001127 Arginine Vasopressin The predominant form of mammalian antidiuretic hormone. It is a nonapeptide containing an ARGININE at residue 8 and two disulfide-linked cysteines at residues of 1 and 6. Arg-vasopressin is used to treat DIABETES INSIPIDUS or to improve vasomotor tone and BLOOD PRESSURE. Argipressin,Vasopressin, Arginine,Arg-Vasopressin,Argipressin Tannate,Arg Vasopressin
D016718 Arachidonic Acid An unsaturated, essential fatty acid. It is found in animal and human fat as well as in the liver, brain, and glandular organs, and is a constituent of animal phosphatides. It is formed by the synthesis from dietary linoleic acid and is a precursor in the biosynthesis of prostaglandins, thromboxanes, and leukotrienes. (all-Z)-5,8,11,14-Eicosatetraenoic acid,Arachidonic Acid, (all-Z)-Isomer, 1-(14)C-Labeled,Arachidonic Acid, (all-Z)-isomer, 3H-Labeled,Arachidonic Acid, Ammonium Salt, (all-Z)-Isomer,Arachidonic Acid, Cerium Salt, (all-Z)-Isomer,Arachidonic Acid, Cesium Salt, (all-Z)-Isomer,Arachidonic Acid, Lithium Salt, (all-Z)-Isomer,Arachidonic Acid, Potassium Salt, (all-Z)-Isomer,Arachidonic Acid, Sodium Salt,Arachidonic Acid, Sodium Salt, (all-Z)-Isomer,Arachidonic Acid, Zinc Salt, (all-Z)-Isomer,Sodium Arachidonate,Vitamin F,Arachidonate, Sodium

Related Publications

M J Wolf, and J Wang, and J Turk, and R W Gross
December 2002, Journal of cellular physiology,
M J Wolf, and J Wang, and J Turk, and R W Gross
August 1998, Biochemical Society transactions,
M J Wolf, and J Wang, and J Turk, and R W Gross
August 1999, The European respiratory journal,
M J Wolf, and J Wang, and J Turk, and R W Gross
February 1995, The American journal of physiology,
M J Wolf, and J Wang, and J Turk, and R W Gross
October 2003, The Journal of biological chemistry,
M J Wolf, and J Wang, and J Turk, and R W Gross
November 1994, Toxicon : official journal of the International Society on Toxinology,
M J Wolf, and J Wang, and J Turk, and R W Gross
October 1993, The Journal of biological chemistry,
M J Wolf, and J Wang, and J Turk, and R W Gross
January 1992, Nature,
M J Wolf, and J Wang, and J Turk, and R W Gross
January 1997, Advances in experimental medicine and biology,
Copied contents to your clipboard!