Processive degradation of proteins and other catalytic properties of the proteasome from Thermoplasma acidophilum. 1997

T N Akopian, and A F Kisselev, and A L Goldberg
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.

Although the structure of the 20 S proteasome from Thermoplasma acidophilum has been elucidated, its enzymatic properties have not been explored in depth. Thermoplasma proteasomes, which contain one type of active site, exhibit not only "chymotrypsin-like" activity (as reported), but also some "post-glutamyl" and "trypsin-like" activities. Like eukaryotic proteasomes, its activity can be stimulated by SDS, Mg2+, and also guanidine HCl, but not urea. The enzyme was strongly inhibited by novel peptide aldehydes with hydrophobic P4 residues, and was rapidly inactivated by 3, 4-dichloroisocoumarin (DCI). DCI modified the N-terminal threonine of the catalytic beta-subunit, the presumed active site nucleophile. To define how proteins are degraded, casein was derivatized with fluorescein isothiocyanate to facilitate detection of released products by the proteasome. Many fluorescent peptides were generated, but the relative amounts of different peptides were independent of the duration of the reaction. The rate of disappearance of protein substrates paralleled the rate of appearance of small products. Unlike conventional proteases, proteasome degrades proteins processively without release of polypeptide intermediates. Upon activation by SDS, guanidine, heat (55 degrees C), or partial inhibition with DCI, proteasomes still functioned processively, but generated a different pattern of peptides under each condition. Thus, processivity is an inherent feature of the 20 S proteasome, not requiring all active sites or ATP hydrolysis.

UI MeSH Term Description Entries
D009097 Multienzyme Complexes Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES. Complexes, Multienzyme
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D003546 Cysteine Endopeptidases ENDOPEPTIDASES which have a cysteine involved in the catalytic process. This group of enzymes is inactivated by CYSTEINE PROTEINASE INHIBITORS such as CYSTATINS and SULFHYDRYL REAGENTS.
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D013822 Thermoplasma A genus of facultatively anaerobic heterotrophic archaea, in the order THERMOPLASMALES, isolated from self-heating coal refuse piles and acid hot springs. They are thermophilic and can grow both with and without sulfur.
D016650 Fluorescein-5-isothiocyanate Fluorescent probe capable of being conjugated to tissue and proteins. It is used as a label in fluorescent antibody staining procedures as well as protein- and amino acid-binding techniques. FITC,5-Isothiocyanatofluorescein,Fluorescein (5 or 6)-Isothiocyanate,Fluorescein-5-isothiocyanate Hydrochloride,5 Isothiocyanatofluorescein,Fluorescein 5 isothiocyanate,Fluorescein 5 isothiocyanate Hydrochloride,Hydrochloride, Fluorescein-5-isothiocyanate
D046988 Proteasome Endopeptidase Complex A large multisubunit complex that plays an important role in the degradation of most of the cytosolic and nuclear proteins in eukaryotic cells. It contains a 700-kDa catalytic sub-complex and two 700-kDa regulatory sub-complexes. The complex digests ubiquitinated proteins and protein activated via ornithine decarboxylase antizyme. 20S Proteasome,Ingensin,Macropain,Macroxyproteinase,Multicatalytic Endopeptidase Complex,Multicatalytic Proteinase,Prosome,Proteasome,Complex, Multicatalytic Endopeptidase,Complex, Proteasome Endopeptidase,Endopeptidase Complex, Multicatalytic,Endopeptidase Complex, Proteasome,Proteasome, 20S,Proteinase, Multicatalytic

Related Publications

T N Akopian, and A F Kisselev, and A L Goldberg
September 1992, European journal of biochemistry,
T N Akopian, and A F Kisselev, and A L Goldberg
April 1995, Science (New York, N.Y.),
T N Akopian, and A F Kisselev, and A L Goldberg
January 1995, Cold Spring Harbor symposia on quantitative biology,
T N Akopian, and A F Kisselev, and A L Goldberg
December 1993, Journal of molecular biology,
T N Akopian, and A F Kisselev, and A L Goldberg
July 1992, FEMS microbiology letters,
T N Akopian, and A F Kisselev, and A L Goldberg
February 1995, FEBS letters,
T N Akopian, and A F Kisselev, and A L Goldberg
June 1986, Biological chemistry Hoppe-Seyler,
T N Akopian, and A F Kisselev, and A L Goldberg
February 2001, Extremophiles : life under extreme conditions,
T N Akopian, and A F Kisselev, and A L Goldberg
August 1981, Biochimica et biophysica acta,
T N Akopian, and A F Kisselev, and A L Goldberg
December 1972, Journal of bacteriology,
Copied contents to your clipboard!