Selective inhibition of cytosolic phospholipase A2 in activated human monocytes. Regulation of superoxide anion production and low density lipoprotein oxidation. 1997

Q Li, and M K Cathcart
Department of Cell Biology, Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.

Our previous studies have shown that monocyte activation and release of O-2 are required for monocyte-mediated low density lipoprotein (LDL) lipid oxidation. We have also found that intracellular Ca2+ levels and protein kinase C activity are requisite participants in this potentially pathogenic process. In these studies, we further investigated the mechanisms involved in the oxidation of LDL lipids by activated human monocytes, particularly the potential contributions of the cytosolic phospholipase A2 (cPLA2) signaling pathway. The most well-studied cPLA2, has a molecular mass of 85 kDa and has been reported to be regulated by both Ca2+ and phosphorylation. We found that cPLA2 protein levels and cPLA2 enzymatic activity were induced upon activation of human monocytes by opsonized zymosan. Pharmacologic inhibition of cPLA2 activity by AACOCF3, which has been reported to be a specific inhibitor of cPLA2 as compared with sPLA2, caused a dose-dependent inhibition of cPLA2 enzymatic activity and LDL lipid oxidation by activated human monocytes, whereas sPLA2 activity was not affected. To corroborate these findings, we used specific antisense oligonucleotides to inhibit cPLA2. We observed that treatment with antisense oligonucleotides caused suppression of both cPLA2 protein expression and enzymatic activity as well as monocyte-mediated LDL lipid oxidation. Furthermore, antisense oligonucleotide treatment caused a substantial inhibition of O-2 production by activated human monocytes. In parallel experimental groups, cPLA2 sense oligonucleotides did not affect cPLA2 protein expression, cPLA2 enzymatic activity, O-2 production, or monocyte-mediated LDL lipid oxidation. These studies support the proposal that cPLA2 activity is required for activated monocytes to oxidize LDL lipids.

UI MeSH Term Description Entries
D008077 Lipoproteins, LDL A class of lipoproteins of small size (18-25 nm) and light (1.019-1.063 g/ml) particles with a core composed mainly of CHOLESTEROL ESTERS and smaller amounts of TRIGLYCERIDES. The surface monolayer consists mostly of PHOSPHOLIPIDS, a single copy of APOLIPOPROTEIN B-100, and free cholesterol molecules. The main LDL function is to transport cholesterol and cholesterol esters to extrahepatic tissues. Low-Density Lipoprotein,Low-Density Lipoproteins,beta-Lipoprotein,beta-Lipoproteins,LDL(1),LDL(2),LDL-1,LDL-2,LDL1,LDL2,Low-Density Lipoprotein 1,Low-Density Lipoprotein 2,LDL Lipoproteins,Lipoprotein, Low-Density,Lipoproteins, Low-Density,Low Density Lipoprotein,Low Density Lipoprotein 1,Low Density Lipoprotein 2,Low Density Lipoproteins,beta Lipoprotein,beta Lipoproteins
D009000 Monocytes Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles. Monocyte
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010741 Phospholipases A Phospholipases that hydrolyze one of the acyl groups of phosphoglycerides or glycerophosphatidates.
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013481 Superoxides Highly reactive compounds produced when oxygen is reduced by a single electron. In biological systems, they may be generated during the normal catalytic function of a number of enzymes and during the oxidation of hemoglobin to METHEMOGLOBIN. In living organisms, SUPEROXIDE DISMUTASE protects the cell from the deleterious effects of superoxides. Superoxide Radical,Superoxide,Superoxide Anion
D015054 Zymosan Zymosan A
D016376 Oligonucleotides, Antisense Short fragments of DNA or RNA that are used to alter the function of target RNAs or DNAs to which they hybridize. Anti-Sense Oligonucleotide,Antisense Oligonucleotide,Antisense Oligonucleotides,Anti-Sense Oligonucleotides,Anti Sense Oligonucleotide,Anti Sense Oligonucleotides,Oligonucleotide, Anti-Sense,Oligonucleotide, Antisense,Oligonucleotides, Anti-Sense
D054467 Phospholipases A2 Phospholipases that hydrolyze the acyl group attached to the 2-position of PHOSPHOGLYCERIDES. Lecithinase A2,Phospholipase A2

Related Publications

Q Li, and M K Cathcart
January 1987, Arteriosclerosis (Dallas, Tex.),
Q Li, and M K Cathcart
October 2000, Current opinion in lipidology,
Q Li, and M K Cathcart
February 2010, Arteriosclerosis, thrombosis, and vascular biology,
Q Li, and M K Cathcart
March 1993, Agents and actions,
Q Li, and M K Cathcart
May 2005, The American journal of cardiology,
Copied contents to your clipboard!