Calcium channels involved in synaptic transmission at the mature and regenerating mouse neuromuscular junction. 1996

E Katz, and P A Ferro, and G Weisz, and O D Uchitel
Instituto de BilogĂ­a Celular y Neurociencias Profesor Eduardo de Robertis, Facultad de Medicina, Universidad de Buenos Aires, Paraguay, Argentina.

1. The involvement of the different types of voltage-dependent calcium channels (VDCCs) in synaptic transmission at the mature and newly formed mammalian neuromuscular junction was studied by evaluating the effects of L-, P/Q- and N-type VDCC antagonists on transmitter release in normal and reinnervating levator auris preparations of adult mice. 2. Nerve-evoked transmitter release was blocked by omega-agatoxin IVA (omega-AgaIVA), a P/Q-type VDCC blocker, both in normal and reinnervating endplates (100 nM omega-AgaIVA caused > 90% inhibition). The N-type VDCC antagonist omega-conotoxin GVIA (omega-CgTX; 1 and 5 microM), as occurs in normal preparations, did not significantly affect this type of release during reinnervation. Nitrendipine (1-10 microM), an L-type VDCC blocker, strongly antagonized release in reinnervating muscles (approximately 40-69% blockade) and lacked any effect in normal preparations. 3. In reinnervating muscles, spontaneous release was not dependent on Ca2+ entry through either P- or L-type VDCCs. Neither 100 nM omega-AgaIVA nor 10 microM nitrendipine affected the miniature endplate potential (MEPP) frequency or amplitude. 4. At the newly formed endplates, K(+)-evoked release was dependent on Ca2+ entry through VDCCs of the P-type family (100 nM omega-AgaIVA reduced approximately 70% of the K(+)-evoked MEPP frequency). L-type VDCCs were found not to participate in this type of release (10 microM nitrendipine lacked any effect). 5. In reinnervating muscles, the L-type VDCC blocker, nitrendipine (10 microM), provoked a significant increase (approximately 25%) in the latency of the evoked endplate potential (EPP). This drug also caused an increase (approximately 0.3 ms) in the latency of the presynaptic currents. The P/Q- and Ny-type VDCC blockers did not affect the latency of the EPP. 6. These results show that at newly formed mouse neuromuscular junctions, as occurs in mature preparations, VDCCs of the P-type family play a prominent role in evoked transmitter release whereas N-type channels are not involved in this process. In addition, signal conduction and transmitter release become highly sensitive to nitrendipine during reinnervation. This suggests that L-type VDCCs may play a role in synaptic transmission at the immature mammalian neuromuscular junction.

UI MeSH Term Description Entries
D008297 Male Males
D008978 Mollusk Venoms Venoms from mollusks, including CONUS and OCTOPUS species. The venoms contain proteins, enzymes, choline derivatives, slow-reacting substances, and several characterized polypeptide toxins that affect the nervous system. Mollusk venoms include cephalotoxin, venerupin, maculotoxin, surugatoxin, conotoxins, and murexine. Conus Venoms,Octopus Venoms,Snail Venoms,Conus Venom,Mollusc Venoms,Mollusk Venom,Octopus Venom,Snail Venom,Venom, Conus,Venom, Mollusk,Venom, Octopus,Venom, Snail,Venoms, Conus,Venoms, Mollusc,Venoms, Mollusk,Venoms, Octopus,Venoms, Snail
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D009568 Nitrendipine A calcium channel blocker with marked vasodilator action. It is an effective antihypertensive agent and differs from other calcium channel blockers in that it does not reduce glomerular filtration rate and is mildly natriuretic, rather than sodium retentive. Balminil,Bay e 5009,Bayotensin,Baypresol,Baypress,Gericin,Jutapress,Nidrel,Niprina,Nitre AbZ,Nitre-Puren,Nitregamma,Nitren 1A Pharma,Nitren Lich,Nitren acis,Nitrend KSK,Nitrendepat,Nitrendi Biochemie,Nitrendidoc,Nitrendimerck,Nitrendipin AL,Nitrendipin Apogepha,Nitrendipin Atid,Nitrendipin Basics,Nitrendipin Heumann,Nitrendipin Jenapharm,Nitrendipin Lindo,Nitrendipin Stada,Nitrendipin beta,Nitrendipin-ratiopharm,Nitrendipino Bayvit,Nitrendipino Ratiopharm,Nitrensal,Nitrepress,Tensogradal,Trendinol,Vastensium,nitrendipin von ct,nitrendipin-corax,Nitre Puren,NitrePuren,Nitrendipin ratiopharm,Nitrendipinratiopharm,nitrendipin corax,nitrendipincorax
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D012038 Regeneration The physiological renewal, repair, or replacement of tissue. Endogenous Regeneration,Regeneration, Endogenous,Regenerations
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50

Related Publications

E Katz, and P A Ferro, and G Weisz, and O D Uchitel
March 2008, The European journal of neuroscience,
E Katz, and P A Ferro, and G Weisz, and O D Uchitel
September 2008, Journal of neuroimmunology,
E Katz, and P A Ferro, and G Weisz, and O D Uchitel
February 2019, Neuroscience,
E Katz, and P A Ferro, and G Weisz, and O D Uchitel
August 2023, The Journal of neuroscience : the official journal of the Society for Neuroscience,
E Katz, and P A Ferro, and G Weisz, and O D Uchitel
January 1993, Journal of physiology, Paris,
E Katz, and P A Ferro, and G Weisz, and O D Uchitel
January 2012, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference,
E Katz, and P A Ferro, and G Weisz, and O D Uchitel
August 2004, Glia,
E Katz, and P A Ferro, and G Weisz, and O D Uchitel
April 2021, International journal of molecular sciences,
E Katz, and P A Ferro, and G Weisz, and O D Uchitel
June 2009, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!