Model-based approaches to analysing incomplete longitudinal and failure time data. 1997

J W Hogan, and N M Laird
Center for Statistical Sciences, Brown University, Providence, RI 02192, USA.

Since Wu and Carroll (Biometrics 44, 175-188) proposed a model for longitudinal progression in the presence of informative dropout, several researchers have developed and studied models for situations where both a vector of repeated outcomes and an event time is available for each subject. These models have been developed for either longitudinal studies with dropout or for survival studies in which a random, time-varying covariate is measured repeatedly across time. When inference about the longitudinal variable is of interest, event times are treated as covariates and are often incomplete due to censoring. If survival or event time is the primary endpoint, repeated outcomes observed prior to the event are viewed as covariates; this covariate process is often incomplete, measured with error, or observed at unscheduled times during the study. We review several models which are used to handle incomplete response and covariate data in both survival and longitudinal studies.

UI MeSH Term Description Entries
D008137 Longitudinal Studies Studies in which variables relating to an individual or group of individuals are assessed over a period of time. Bogalusa Heart Study,California Teachers Study,Framingham Heart Study,Jackson Heart Study,Longitudinal Survey,Tuskegee Syphilis Study,Bogalusa Heart Studies,California Teachers Studies,Framingham Heart Studies,Heart Studies, Bogalusa,Heart Studies, Framingham,Heart Studies, Jackson,Heart Study, Bogalusa,Heart Study, Framingham,Heart Study, Jackson,Jackson Heart Studies,Longitudinal Study,Longitudinal Surveys,Studies, Bogalusa Heart,Studies, California Teachers,Studies, Jackson Heart,Studies, Longitudinal,Study, Bogalusa Heart,Study, California Teachers,Study, Longitudinal,Survey, Longitudinal,Surveys, Longitudinal,Syphilis Studies, Tuskegee,Syphilis Study, Tuskegee,Teachers Studies, California,Teachers Study, California,Tuskegee Syphilis Studies
D011897 Random Allocation A process involving chance used in therapeutic trials or other research endeavor for allocating experimental subjects, human or animal, between treatment and control groups, or among treatment groups. It may also apply to experiments on inanimate objects. Randomization,Allocation, Random
D012044 Regression Analysis Procedures for finding the mathematical function which best describes the relationship between a dependent variable and one or more independent variables. In linear regression (see LINEAR MODELS) the relationship is constrained to be a straight line and LEAST-SQUARES ANALYSIS is used to determine the best fit. In logistic regression (see LOGISTIC MODELS) the dependent variable is qualitative rather than continuously variable and LIKELIHOOD FUNCTIONS are used to find the best relationship. In multiple regression, the dependent variable is considered to depend on more than a single independent variable. Regression Diagnostics,Statistical Regression,Analysis, Regression,Analyses, Regression,Diagnostics, Regression,Regression Analyses,Regression, Statistical,Regressions, Statistical,Statistical Regressions
D003627 Data Interpretation, Statistical Application of statistical procedures to analyze specific observed or assumed facts from a particular study. Data Analysis, Statistical,Data Interpretations, Statistical,Interpretation, Statistical Data,Statistical Data Analysis,Statistical Data Interpretation,Analyses, Statistical Data,Analysis, Statistical Data,Data Analyses, Statistical,Interpretations, Statistical Data,Statistical Data Analyses,Statistical Data Interpretations
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D015233 Models, Statistical Statistical formulations or analyses which, when applied to data and found to fit the data, are then used to verify the assumptions and parameters used in the analysis. Examples of statistical models are the linear model, binomial model, polynomial model, two-parameter model, etc. Probabilistic Models,Statistical Models,Two-Parameter Models,Model, Statistical,Models, Binomial,Models, Polynomial,Statistical Model,Binomial Model,Binomial Models,Model, Binomial,Model, Polynomial,Model, Probabilistic,Model, Two-Parameter,Models, Probabilistic,Models, Two-Parameter,Polynomial Model,Polynomial Models,Probabilistic Model,Two Parameter Models,Two-Parameter Model
D015999 Multivariate Analysis A set of techniques used when variation in several variables are studied simultaneously. In statistics, multivariate analysis is interpreted as any analytic method that allows simultaneous study of two or more dependent variables. Analysis, Multivariate,Multivariate Analyses
D016013 Likelihood Functions Functions constructed from a statistical model and a set of observed data which give the probability of that data for various values of the unknown model parameters. Those parameter values that maximize the probability are the maximum likelihood estimates of the parameters. Likelihood Ratio Test,Maximum Likelihood Estimates,Estimate, Maximum Likelihood,Estimates, Maximum Likelihood,Function, Likelihood,Functions, Likelihood,Likelihood Function,Maximum Likelihood Estimate,Test, Likelihood Ratio
D016019 Survival Analysis A class of statistical procedures for estimating the survival function (function of time, starting with a population 100% well at a given time and providing the percentage of the population still well at later times). The survival analysis is then used for making inferences about the effects of treatments, prognostic factors, exposures, and other covariates on the function. Analysis, Survival,Analyses, Survival,Survival Analyses

Related Publications

J W Hogan, and N M Laird
June 2018, Burns : journal of the International Society for Burn Injuries,
J W Hogan, and N M Laird
May 2014, The British journal of mathematical and statistical psychology,
J W Hogan, and N M Laird
March 2007, Annals of human genetics,
J W Hogan, and N M Laird
December 2008, Statistics in medicine,
J W Hogan, and N M Laird
May 2020, The British journal of mathematical and statistical psychology,
Copied contents to your clipboard!