Molecular cloning of the Corynebacterium glutamicum ('Brevibacterium lactofermentum' AJ12036) odhA gene encoding a novel type of 2-oxoglutarate dehydrogenase. 1996

Y Usuda, and N Tujimoto, and C Abe, and Y Asakura, and E Kimura, and Y Kawahara, and O Kurahashi, and H Matsui
Central Research Laboratories, AJINOMOTO Co., Inc., Kawasaki-shi, Japan.

The Corynebacterium glutamicum ('Brevibacterium lactofermentum' AJ12036) odhA gene, encoding 2-oxoglutarate dehydrogenase (E1o subunit of the 2-oxoglutarate dehydrogenase complex), has been isolated and identified as an homologous counterpart of the Escherichia coll sucA and Bacillus subtilis odhA genes. The nucleotide sequence of a 4394 bp chromosomal fragment containing the C. glutamicum odhA gene was determined. The odhA gene comprised 3771 bp (1257 codons, including the initiation codon) and a molecular mass of 138656 Da was predicted for the OdhA polypeptide. Northern blot analysis revealed a 3.9 kb transcript. The size of the transcript, together with the presence of a rho-independent terminator-like structure, suggests that C. glutamicum odhA is monocistronic. Cells harbouring plasmids carrying C. glutamicum odhA showed a threefold increase in specific 2-oxoglutarate dehydrogenase complex activity and expression of a protein with an apparent molecular mass of 136 kDa, in good agreement with the predicted size of the OdhA polypeptide. The C-terminal region of the C. glutamicum OdhA protein shows strong sequence similarity to E1os from other organisms. C. glutamicum OdhA has an N-terminal extension not found in previously reported E1os. The amino acid sequence of this extension shows similarity to that of the C-terminal region of dihydrolipoamide S-succinyltransferase (E2o) subunits of 2-oxoglutarate dehydrogenase complexes and dihydrolipoamide S-acetyltransferase (E2p) subunits of pyruvate dehydrogenase complexes. It suggests that the C. glutamicum odhA gene might encode a novel bifunctional protein with E1o and E2o activities.

UI MeSH Term Description Entries
D007655 Ketoglutarate Dehydrogenase Complex 2-Keto-4-Hydroxyglutarate Dehydrogenase,2-Oxoglutarate Dehydrogenase,2-Oxoglutarate Dehydrogenase Complex,Oxoglutarate Dehydrogenase,alpha-Ketoglutarate Dehydrogenase,alpha-Ketoglutarate Dehydrogenase Complex,2 Keto 4 Hydroxyglutarate Dehydrogenase,2 Oxoglutarate Dehydrogenase,2 Oxoglutarate Dehydrogenase Complex,Complex, 2-Oxoglutarate Dehydrogenase,Complex, Ketoglutarate Dehydrogenase,Complex, alpha-Ketoglutarate Dehydrogenase,Dehydrogenase Complex, 2-Oxoglutarate,Dehydrogenase Complex, Ketoglutarate,Dehydrogenase Complex, alpha-Ketoglutarate,Dehydrogenase, 2-Keto-4-Hydroxyglutarate,Dehydrogenase, 2-Oxoglutarate,Dehydrogenase, Oxoglutarate,Dehydrogenase, alpha-Ketoglutarate,alpha Ketoglutarate Dehydrogenase,alpha Ketoglutarate Dehydrogenase Complex
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011768 Pyruvate Dehydrogenase Complex A multienzyme complex responsible for the formation of ACETYL COENZYME A from pyruvate. The enzyme components are PYRUVATE DEHYDROGENASE (LIPOAMIDE); dihydrolipoamide acetyltransferase; and LIPOAMIDE DEHYDROGENASE. Pyruvate dehydrogenase complex is subject to three types of control: inhibited by acetyl-CoA and NADH; influenced by the energy state of the cell; and inhibited when a specific serine residue in the pyruvate decarboxylase is phosphorylated by ATP. PYRUVATE DEHYDROGENASE (LIPOAMIDE)-PHOSPHATASE catalyzes reactivation of the complex. (From Concise Encyclopedia Biochemistry and Molecular Biology, 3rd ed) Complex, Pyruvate Dehydrogenase,Dehydrogenase Complex, Pyruvate
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002876 Chromosomes, Bacterial Structures within the nucleus of bacterial cells consisting of or containing DNA, which carry genetic information essential to the cell. Bacterial Chromosome,Bacterial Chromosomes,Chromosome, Bacterial
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003062 Codon A set of three nucleotides in a protein coding sequence that specifies individual amino acids or a termination signal (CODON, TERMINATOR). Most codons are universal, but some organisms do not produce the transfer RNAs (RNA, TRANSFER) complementary to all codons. These codons are referred to as unassigned codons (CODONS, NONSENSE). Codon, Sense,Sense Codon,Codons,Codons, Sense,Sense Codons
D003352 Corynebacterium A genus of asporogenous bacteria that is widely distributed in nature. Its organisms appear as straight to slightly curved rods and are known to be human and animal parasites and pathogens.
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

Y Usuda, and N Tujimoto, and C Abe, and Y Asakura, and E Kimura, and Y Kawahara, and O Kurahashi, and H Matsui
December 2014, Journal of biotechnology,
Y Usuda, and N Tujimoto, and C Abe, and Y Asakura, and E Kimura, and Y Kawahara, and O Kurahashi, and H Matsui
April 2010, FEBS letters,
Y Usuda, and N Tujimoto, and C Abe, and Y Asakura, and E Kimura, and Y Kawahara, and O Kurahashi, and H Matsui
October 1997, Gene,
Y Usuda, and N Tujimoto, and C Abe, and Y Asakura, and E Kimura, and Y Kawahara, and O Kurahashi, and H Matsui
January 2005, Canadian journal of microbiology,
Y Usuda, and N Tujimoto, and C Abe, and Y Asakura, and E Kimura, and Y Kawahara, and O Kurahashi, and H Matsui
February 1992, Molecular microbiology,
Y Usuda, and N Tujimoto, and C Abe, and Y Asakura, and E Kimura, and Y Kawahara, and O Kurahashi, and H Matsui
July 1997, Bioscience, biotechnology, and biochemistry,
Y Usuda, and N Tujimoto, and C Abe, and Y Asakura, and E Kimura, and Y Kawahara, and O Kurahashi, and H Matsui
August 1991, FEMS microbiology letters,
Y Usuda, and N Tujimoto, and C Abe, and Y Asakura, and E Kimura, and Y Kawahara, and O Kurahashi, and H Matsui
December 1994, Applied microbiology and biotechnology,
Y Usuda, and N Tujimoto, and C Abe, and Y Asakura, and E Kimura, and Y Kawahara, and O Kurahashi, and H Matsui
January 1990, European journal of biochemistry,
Y Usuda, and N Tujimoto, and C Abe, and Y Asakura, and E Kimura, and Y Kawahara, and O Kurahashi, and H Matsui
January 1995, Journal of bacteriology,
Copied contents to your clipboard!