Development of the organ of Corti in horseshoe bats: scanning and transmission electron microscopy. 1997

M Vater, and M Lenoir, and R Pujol
Institut für Zoologie, Regensburg, Germany. marianne.vater@biologie.uni-regensburg.de

The late prenatal and early postnatal development of the organ of Corti were studied in the horseshoe bat (Rhinolophus rouxi) by using scanning and transmission electron microscopy. Arrangements and dimensions of stereocilia bundles, together with their contacts with the tectorial membrane, were found to be adult-like shortly before birth, and thus before the biological onset of hearing (3-5 days after birth). During the first postnatal week, there were baso-apical gradients in disappearing kinocilia on inner hair cells (IHC), microvillis of supporting cells, and marginal pillars. The lower basal cochlear turn was mature with respect to these regressing structures at 3 days after birth, the apical turn at 10 days after birth. At birth, cytodifferentiation was found to be completed, and the tunnel of Corti and innermost spaces of Nuel had opened. The ultrastructure of IHCs was not markedly different from that at later ages. In outer hair cells (OHC), the adult-like regular arrangement of a single layer of subsurface cisternae and pillars was seen as soon as protrusions of supporting cells had withdrawn from the lateral wall of OHCs (basal turn at birth and throughout the cochlea 2 days after birth). Numerous efferent endings contacted the somata of IHCs up to the second postnatal week. Since the medial olivocochlear system is absent in horseshoe bats, the adult-like innervation pattern of OHCs was established at the biological onset of hearing. During the first 2 postnatal weeks, the cytoskeleton of pillar and Deiters cells, and the specialized Deiters cups developed. The organ of Corti appeared adult-like at 14 days, apart from the persistence of a reduced tympanic cover layer attached to the basilar membrane. Morphological data support physiological findings that the first broadly tuned auditory responses arise from the basal turn. The distinct low to high frequency gradient in development of sensitivity during the first 2 postnatal weeks of the horseshoe bat was not, however, matched by morphological gradients, and it would appear that the development of the cytoskeleton of supporting cells contributed to the establishment of tuning in the auditory fovea. Adult-like morphology of the organ of Corti coincided with the emergence of sharply tuned responses from the auditory fovea, but there was no clear-cut correlate for the shift in tuned foveal frequency representation that occurred during the following 3 weeks.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D009925 Organ of Corti The spiral EPITHELIUM containing sensory AUDITORY HAIR CELLS and supporting cells in the cochlea. Organ of Corti, situated on the BASILAR MEMBRANE and overlaid by a gelatinous TECTORIAL MEMBRANE, converts sound-induced mechanical waves to neural impulses to the brain. Basilar Papilla,Corti's Organ,Spiral Organ,Corti Organ,Cortis Organ,Organ, Corti's,Organ, Spiral,Organs, Spiral,Papilla, Basilar,Spiral Organs
D011984 Sensory Receptor Cells Specialized afferent neurons capable of transducing sensory stimuli into NERVE IMPULSES to be transmitted to the CENTRAL NERVOUS SYSTEM. Sometimes sensory receptors for external stimuli are called exteroceptors; for internal stimuli are called interoceptors and proprioceptors. Nerve Endings, Sensory,Neurons, Sensory,Neuroreceptors,Receptors, Neural,Neural Receptors,Receptors, Sensory,Sensory Neurons,Sensory Receptors,Nerve Ending, Sensory,Neural Receptor,Neuron, Sensory,Neuroreceptor,Receptor Cell, Sensory,Receptor Cells, Sensory,Receptor, Neural,Receptor, Sensory,Sensory Nerve Ending,Sensory Nerve Endings,Sensory Neuron,Sensory Receptor,Sensory Receptor Cell
D002685 Chiroptera Order of mammals whose members are adapted for flight. It includes bats, flying foxes, and fruit bats. Bats,Flying Foxes,Horseshoe Bats,Pteropodidae,Pteropus,Rhinolophus,Rousettus,Bat, Horseshoe,Bats, Horseshoe,Foxes, Flying,Horseshoe Bat
D006198 Hair Cells, Auditory Sensory cells in the organ of Corti, characterized by their apical stereocilia (hair-like projections). The inner and outer hair cells, as defined by their proximity to the core of spongy bone (the modiolus), change morphologically along the COCHLEA. Towards the cochlear apex, the length of hair cell bodies and their apical STEREOCILIA increase, allowing differential responses to various frequencies of sound. Auditory Hair Cells,Cochlear Hair Cells,Auditory Hair Cell,Cell, Cochlear Hair,Cells, Cochlear Hair,Cochlear Hair Cell,Hair Cell, Auditory,Hair Cell, Cochlear,Hair Cells, Cochlear
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D001306 Auditory Pathways NEURAL PATHWAYS and connections within the CENTRAL NERVOUS SYSTEM, beginning at the hair cells of the ORGAN OF CORTI, continuing along the eighth cranial nerve, and terminating at the AUDITORY CORTEX. Auditory Pathway,Pathway, Auditory,Pathways, Auditory
D013680 Tectorial Membrane A membrane, attached to the bony SPIRAL LAMINA, overlying and coupling with the hair cells of the ORGAN OF CORTI in the inner ear. It is a glycoprotein-rich keratin-like layer containing fibrils embedded in a dense amorphous substance. Membrane, Tectorial,Membranes, Tectorial,Tectorial Membranes

Related Publications

M Vater, and M Lenoir, and R Pujol
February 2015, The Journal of comparative neurology,
M Vater, and M Lenoir, and R Pujol
November 1970, Science (New York, N.Y.),
M Vater, and M Lenoir, and R Pujol
April 1983, Journal of the Royal Society of Medicine,
M Vater, and M Lenoir, and R Pujol
August 1977, Archives of oto-rhino-laryngology,
M Vater, and M Lenoir, and R Pujol
January 1981, Archives of oto-rhino-laryngology,
M Vater, and M Lenoir, and R Pujol
July 1987, Journal of microscopy,
M Vater, and M Lenoir, and R Pujol
May 1973, Nihon Jibiinkoka Gakkai kaiho,
M Vater, and M Lenoir, and R Pujol
May 1957, The American journal of anatomy,
Copied contents to your clipboard!