A novel mutation avoidance mechanism dependent on S. cerevisiae RAD27 is distinct from DNA mismatch repair. 1997

D X Tishkoff, and N Filosi, and G M Gaida, and R D Kolodner
Charles A. Dana Division of Human Cancer Genetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.

Mutations in the S. cerevisiae RAD27 (also called RTH1 or YKL510) gene result in a strong mutator phenotype. In this study we show that the majority of the resulting mutations have a structure in which sequences ranging from 5-108 bp flanked by direct repeats of 3-12 bp are duplicated. Such mutations have not been previously detected at high frequency in the mutation spectra of mutator strains. Epistasis analysis indicates that RAD27 does not play a major role in MSH2-dependent mismatch repair. Mutations in RAD27 cause increased rates of mitotic crossing over and are lethal in combination with mutations in RAD51 and RAD52. These observations suggest that the majority of replication errors that accumulate in rad27 strains are processed by double-strand break repair, while a smaller percentage are processed by a mutagenic repair pathway. The duplication mutations seen in rad27 mutants occur both in human tumors and as germline mutations in inherited human diseases.

UI MeSH Term Description Entries
D008938 Mitosis A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species. M Phase, Mitotic,Mitotic M Phase,M Phases, Mitotic,Mitoses,Mitotic M Phases,Phase, Mitotic M,Phases, Mitotic M
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D012091 Repetitive Sequences, Nucleic Acid Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES). DNA Repetitious Region,Direct Repeat,Genes, Selfish,Nucleic Acid Repetitive Sequences,Repetitive Region,Selfish DNA,Selfish Genes,DNA, Selfish,Repetitious Region, DNA,Repetitive Sequence,DNA Repetitious Regions,DNAs, Selfish,Direct Repeats,Gene, Selfish,Repeat, Direct,Repeats, Direct,Repetitious Regions, DNA,Repetitive Regions,Repetitive Sequences,Selfish DNAs,Selfish Gene
D003434 Crossing Over, Genetic The reciprocal exchange of segments at corresponding positions along pairs of homologous CHROMOSOMES by symmetrical breakage and crosswise rejoining forming cross-over sites (HOLLIDAY JUNCTIONS) that are resolved during CHROMOSOME SEGREGATION. Crossing-over typically occurs during MEIOSIS but it may also occur in the absence of meiosis, for example, with bacterial chromosomes, organelle chromosomes, or somatic cell nuclear chromosomes. Crossing Over,Crossing-Over, Genetic,Crossing Overs,Genetic Crossing Over,Genetic Crossing-Over
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries

Related Publications

D X Tishkoff, and N Filosi, and G M Gaida, and R D Kolodner
April 2002, Journal of cellular physiology,
D X Tishkoff, and N Filosi, and G M Gaida, and R D Kolodner
June 2004, Genes & genetic systems,
D X Tishkoff, and N Filosi, and G M Gaida, and R D Kolodner
February 2001, Molecular pharmacology,
D X Tishkoff, and N Filosi, and G M Gaida, and R D Kolodner
September 2021, Nature communications,
D X Tishkoff, and N Filosi, and G M Gaida, and R D Kolodner
January 2000, Cold Spring Harbor symposia on quantitative biology,
D X Tishkoff, and N Filosi, and G M Gaida, and R D Kolodner
January 2018, Genome research,
D X Tishkoff, and N Filosi, and G M Gaida, and R D Kolodner
February 1997, Molecular & general genetics : MGG,
D X Tishkoff, and N Filosi, and G M Gaida, and R D Kolodner
February 1995, Science (New York, N.Y.),
D X Tishkoff, and N Filosi, and G M Gaida, and R D Kolodner
December 2007, The Journal of biological chemistry,
D X Tishkoff, and N Filosi, and G M Gaida, and R D Kolodner
April 2017, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!