Residue Glu-91 of Chlamydomonas reinhardtii ferredoxin is essential for electron transfer to ferredoxin-thioredoxin reductase. 1997

J P Jacquot, and M Stein, and A Suzuki, and S Liottet, and G Sandoz, and M Miginiac-Maslow
URA 1128 CNRS, Université de Paris-Sud, Institut de Biotechnologie desPlantes, France. jacquot@ibp.u-psud.fr

The [2Fe-2S] soluble ferredoxin from Chlamydomonas reinhardtii was mutated by site directed mutagenesis, using PCR and the expression plasmid pET-Fd as a template. The recombinant mutated proteins were purified to homogeneity and tested in the activation of NADP-malate dehydrogenase, a light dependent reaction in which ferredoxin thioredoxin reductase (FTR) and thioredoxin are involved. The mutation of residue Glu-91 (E92 in spinach, E94 in Anabaena) alone, either to Gln (E91Q) or to Lys (E91K), was found to completely abolish the reaction of the enzyme light activation. On the other hand, the mutants (E92Q) or (E92K) were as efficient as the wild type ferredoxin in this reaction whereas the double mutants (E91Q/E92Q) or (E91K/E92K) had no activity. In addition, a triple mutant (D25A/E28Q/E29Q) was also found to be inactive for this redox dependent light activation. All these mutations had much weaker effects on the ferredoxin/ferredoxin NADP reductase interaction as measured by the cytochrome c reduction assay. These results indicate that there is a recognition site for FTR in the C terminus part of ferredoxin, but also that a core of negatively charged residues in the alpha1 helix of ferredoxin might be important in the general process of light activation.

UI MeSH Term Description Entries
D007506 Iron-Sulfur Proteins A group of proteins possessing only the iron-sulfur complex as the prosthetic group. These proteins participate in all major pathways of electron transport: photosynthesis, respiration, hydroxylation and bacterial hydrogen and nitrogen fixation. Iron-Sulfur Protein,Iron Sulfur Proteins,Iron Sulfur Protein,Protein, Iron-Sulfur,Proteins, Iron Sulfur,Proteins, Iron-Sulfur,Sulfur Proteins, Iron
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D008291 Malate Dehydrogenase An enzyme that catalyzes the conversion of (S)-malate and NAD+ to oxaloacetate and NADH. EC 1.1.1.37. Malic Dehydrogenase,NAD-Malate Dehydrogenase,Dehydrogenase, Malate,Dehydrogenase, Malic,Dehydrogenase, NAD-Malate,NAD Malate Dehydrogenase
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron
D005287 Ferredoxin-NADP Reductase An enzyme that catalyzes the oxidation and reduction of FERREDOXIN or ADRENODOXIN in the presence of NADP. EC 1.18.1.2 was formerly listed as EC 1.6.7.1 and EC 1.6.99.4. Adrenodoxin Reductase,Iron-Sulfur Protein Reductase,NADPH-Ferredoxin Reductase,Ferredoxin NADP Reductase,Iron Sulfur Protein Reductase,NADPH Ferredoxin Reductase,Protein Reductase, Iron-Sulfur,Reductase, Adrenodoxin,Reductase, Ferredoxin-NADP,Reductase, Iron-Sulfur Protein,Reductase, NADPH-Ferredoxin
D005288 Ferredoxins Iron-containing proteins that transfer electrons, usually at a low potential, to flavoproteins; the iron is not present as in heme. (McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Ferredoxin,Ferredoxin I,Ferredoxin II,Ferredoxin III
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J P Jacquot, and M Stein, and A Suzuki, and S Liottet, and G Sandoz, and M Miginiac-Maslow
April 2017, The Biochemical journal,
J P Jacquot, and M Stein, and A Suzuki, and S Liottet, and G Sandoz, and M Miginiac-Maslow
July 2003, FEBS letters,
J P Jacquot, and M Stein, and A Suzuki, and S Liottet, and G Sandoz, and M Miginiac-Maslow
September 1998, Biochemistry,
J P Jacquot, and M Stein, and A Suzuki, and S Liottet, and G Sandoz, and M Miginiac-Maslow
February 1991, Biochemistry,
J P Jacquot, and M Stein, and A Suzuki, and S Liottet, and G Sandoz, and M Miginiac-Maslow
December 1994, Plant physiology,
J P Jacquot, and M Stein, and A Suzuki, and S Liottet, and G Sandoz, and M Miginiac-Maslow
October 2023, Plant physiology,
J P Jacquot, and M Stein, and A Suzuki, and S Liottet, and G Sandoz, and M Miginiac-Maslow
January 1995, Archives of biochemistry and biophysics,
J P Jacquot, and M Stein, and A Suzuki, and S Liottet, and G Sandoz, and M Miginiac-Maslow
February 1998, The EMBO journal,
Copied contents to your clipboard!