Deficits of smooth pursuit eye movements after frontal and parietal lesions. 1996

W Heide, and K Kurzidim, and D Kömpf
Department of Neurology, Medical University at Lübeck, Germany.

To assess the contribution of the human frontal and parietal cortices to smooth pursuit (SP) eye movements, we recorded ocular motor responses to predictable (periodic) and unpredictable (step-ramp) foveal pursuit stimuli and to constant-velocity optokinetic full-field motion in 31 patients with chronic focal unilateral hemispheric lesions and in 50 age-related healthy adults, using infrared reflection oculography. Lesions were located either in the posterior parietal cortex (PPC), leaving the visual fields largely intact, or in the region of the frontal eye fields (FEF), the dorsolateral prefrontal cortex (PFC) or the supplementary motor area (SMA). We found (i) directional deficits in terms of lower pursuit velocities with ipsiversive target motion, more pronounced with predictable than with step-ramp stimuli, in patients with FEF lesions more frequently (in each of the four cases) than in patients with PPC lesions (in four out of 13 cases with foveal and in eight out of 13 cases with optokinetic stimulation); (ii) a relatively prolonged latency of direction reversal with periodic constant-velocity stimuli after SMA lesions (three cases), implying impaired anticipation of the target trajectory; (iii) no SP deficits following selective prefrontal lesions (eight cases); (iv) in some patients with PPC lesions (four out of 13) retinotopic deficits of SP initiation in both horizontal directions when step-ramp stimuli started in the contralesional hemifield, including prolonged pursuit latencies, which were independent of contralateral visual hemineglect. Directional and retinotopic SP deficits in patients with PPC lesions corresponded to SP deficits after unilateral lesions of middle temporal (MT) and medial superior temporal (MST) cortex in the monkey, and occurred only when lesions included the junction of Brodmann areas 19, 37 and 39, where the human homologues of MT and MST are assumed to lie. In conclusion, human SP eye movements are controlled, as in non-human primates, by a network of frontal and posterior cortical areas. Selective damage to each of these areas impairs specific SP subfunctions, reflecting subsequent stages of cortical processing from visual motion input to SP-related motor output.

UI MeSH Term Description Entries
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D010296 Parietal Lobe Upper central part of the cerebral hemisphere. It is located posterior to central sulcus, anterior to the OCCIPITAL LOBE, and superior to the TEMPORAL LOBES. Brodmann Area 39,Brodmann Area 40,Brodmann Area 5,Brodmann Area 7,Brodmann's Area 39,Brodmann's Area 40,Brodmann's Area 5,Brodmann's Area 7,Inferior Parietal Cortex,Secondary Sensorimotor Cortex,Superior Parietal Lobule,Angular Gyrus,Gyrus Angularis,Gyrus Supramarginalis,Intraparietal Sulcus,Marginal Sulcus,Parietal Cortex,Parietal Lobule,Parietal Region,Posterior Paracentral Lobule,Posterior Parietal Cortex,Praecuneus,Precuneus,Precuneus Cortex,Prelunate Gyrus,Supramarginal Gyrus,Area 39, Brodmann,Area 39, Brodmann's,Area 40, Brodmann,Area 40, Brodmann's,Area 5, Brodmann,Area 5, Brodmann's,Area 7, Brodmann,Area 7, Brodmann's,Brodmanns Area 39,Brodmanns Area 40,Brodmanns Area 5,Brodmanns Area 7,Cortex, Inferior Parietal,Cortex, Parietal,Cortex, Posterior Parietal,Cortex, Precuneus,Cortex, Secondary Sensorimotor,Cortices, Inferior Parietal,Gyrus, Angular,Gyrus, Prelunate,Gyrus, Supramarginal,Inferior Parietal Cortices,Lobe, Parietal,Lobule, Parietal,Lobule, Posterior Paracentral,Lobule, Superior Parietal,Paracentral Lobule, Posterior,Paracentral Lobules, Posterior,Parietal Cortex, Inferior,Parietal Cortex, Posterior,Parietal Cortices,Parietal Cortices, Inferior,Parietal Cortices, Posterior,Parietal Lobes,Parietal Lobule, Superior,Parietal Lobules,Parietal Lobules, Superior,Parietal Regions,Posterior Paracentral Lobules,Posterior Parietal Cortices,Precuneus Cortices,Region, Parietal,Secondary Sensorimotor Cortices,Sensorimotor Cortex, Secondary,Superior Parietal Lobules
D011698 Pursuit, Smooth Eye movements that are slow, continuous, and conjugate and occur when a fixed object is moved slowly. Pursuits, Smooth,Smooth Pursuit,Smooth Pursuits
D001927 Brain Diseases Pathologic conditions affecting the BRAIN, which is composed of the intracranial components of the CENTRAL NERVOUS SYSTEM. This includes (but is not limited to) the CEREBRAL CORTEX; intracranial white matter; BASAL GANGLIA; THALAMUS; HYPOTHALAMUS; BRAIN STEM; and CEREBELLUM. Intracranial Central Nervous System Disorders,Brain Disorders,CNS Disorders, Intracranial,Central Nervous System Disorders, Intracranial,Central Nervous System Intracranial Disorders,Encephalon Diseases,Encephalopathy,Intracranial CNS Disorders,Brain Disease,Brain Disorder,CNS Disorder, Intracranial,Encephalon Disease,Encephalopathies,Intracranial CNS Disorder
D005260 Female Females
D005625 Frontal Lobe The part of the cerebral hemisphere anterior to the central sulcus, and anterior and superior to the lateral sulcus. Brodmann Area 8,Brodmann's Area 8,Frontal Cortex,Frontal Eye Fields,Lobus Frontalis,Supplementary Eye Field,Area 8, Brodmann,Area 8, Brodmann's,Brodmanns Area 8,Cortex, Frontal,Eye Field, Frontal,Eye Field, Supplementary,Eye Fields, Frontal,Frontal Cortices,Frontal Eye Field,Frontal Lobes,Lobe, Frontal,Supplementary Eye Fields
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D000368 Aged A person 65 years of age or older. For a person older than 79 years, AGED, 80 AND OVER is available. Elderly

Related Publications

W Heide, and K Kurzidim, and D Kömpf
April 1995, Annals of neurology,
W Heide, and K Kurzidim, and D Kömpf
July 1998, Journal of neurophysiology,
W Heide, and K Kurzidim, and D Kömpf
July 1993, Journal of neurology, neurosurgery, and psychiatry,
W Heide, and K Kurzidim, and D Kömpf
January 1986, Progress in brain research,
W Heide, and K Kurzidim, and D Kömpf
January 1991, Experimental brain research,
W Heide, and K Kurzidim, and D Kömpf
June 1996, Experimental brain research,
W Heide, and K Kurzidim, and D Kömpf
April 2004, The Journal of neuroscience : the official journal of the Society for Neuroscience,
W Heide, and K Kurzidim, and D Kömpf
September 2019, Annual review of vision science,
W Heide, and K Kurzidim, and D Kömpf
December 2004, Neuroreport,
Copied contents to your clipboard!