Interactions of cytochrome P450 2B4 with NADPH-cytochrome P450 reductase studied by fluorescent probe. 1996

D R Davydov, and T V Knyushko, and I P Kanaeva, and Y M Koen, and N F Samenkova, and A I Archakov, and G Hui Bon Hoa
Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, Russia.

A new method for monitoring the formation of the cytochrome P450 complexes with NADPH-cytochrome P450 reductase (NCPR) is introduced. The method is based on the quenching of fluorescence of NCPR labelled with 7-ethylamino-3-(4'-maleimidilphenyl)-4-methylcoumarin maleimide (CPM). In a monomerized soluble reconstituted system in the absence of phospholipid, cytochrome P450 2B4 and NCPRcpm were shown to form 1:1 complexes with a Kd of 0.038 microM. Formation of the complex follows the kinetics of reversible second order transition with k(on) = 6.5 10(5) M-1 s-1. Application of high hydrostatic pressure induces dissociation of the complex (delta V degrees = -65 mL/mol). Succinylation of the hemoprotein increases the value of Kd to 0.5 microM primarily by decreasing k(on). In contrast to what was shown for intact 2B4, rising pressure does not take apart succinylated hemoprotein and NCPRcpm molecules, but causes some internal transition in their complex that diminishes the quenching. This transition is characterised by a very large volume change (delta V degrees = -155 mL/mol). The following conclusions were drawn: 1) a molecule of 2B4 contains two distinct contact regions involved in the interactions with NCPR. Only one of these regions is polar and highly hydrated in unbound hemoprotein; 2) interactions of the polar regions of 2B4 and NCPR are necessary to bring CPM-labelled cysteine of NCPR in short distance of the heme of 2B4; and 3) some of the lysine residues located in the proximity of the polar binding regions are apparently involved in the formation of the internal salt bridges in the molecule of 2B4.

UI MeSH Term Description Entries
D009247 NADH, NADPH Oxidoreductases A group of oxidoreductases that act on NADH or NADPH. In general, enzymes using NADH or NADPH to reduce a substrate are classified according to the reverse reaction, in which NAD+ or NADP+ is formally regarded as an acceptor. This subclass includes only those enzymes in which some other redox carrier is the acceptor. (Enzyme Nomenclature, 1992, p100) EC 1.6. Oxidoreductases, NADH, NADPH,NADPH Oxidoreductases NADH,Oxidoreductases NADH, NADPH
D009251 NADPH-Ferrihemoprotein Reductase A flavoprotein that catalyzes the reduction of heme-thiolate-dependent monooxygenases and is part of the microsomal hydroxylating system. EC 1.6.2.4. Cytochrome P-450 Reductase,Ferrihemoprotein P-450 Reductase,NADPH Cytochrome P-450 Oxidoreductase,NADPH Cytochrome P-450 Reductase,NADPH Cytochrome c Reductase,Cytochrome P-450 Oxidase,Cytochrome P450 Reductase,Ferrihemoprotein P450 Reductase,NADPH Cytochrome P450 Oxidoreductase,NADPH Cytochrome P450 Reductase,NADPH-Cytochrome P450 Reductase,NADPH-P450 Reductase,Cytochrome P 450 Oxidase,Cytochrome P 450 Reductase,Ferrihemoprotein P 450 Reductase,NADPH Cytochrome P 450 Oxidoreductase,NADPH Cytochrome P 450 Reductase,NADPH Ferrihemoprotein Reductase,NADPH P450 Reductase,Oxidase, Cytochrome P-450,P-450 Oxidase, Cytochrome,P450 Reductase, Cytochrome,P450 Reductase, NADPH-Cytochrome,Reductase, Cytochrome P-450,Reductase, Cytochrome P450,Reductase, Ferrihemoprotein P-450,Reductase, Ferrihemoprotein P450,Reductase, NADPH-Cytochrome P450,Reductase, NADPH-Ferrihemoprotein,Reductase, NADPH-P450
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D003374 Coumarins Synthetic or naturally occurring substances related to coumarin, the delta-lactone of coumarinic acid. 1,2-Benzopyrone Derivatives,1,2-Benzopyrones,Coumarin Derivative,Coumarine,1,2-Benzo-Pyrones,Benzopyran-2-ones,Coumarin Derivatives,Coumarines,1,2 Benzo Pyrones,1,2 Benzopyrone Derivatives,1,2 Benzopyrones,Benzopyran 2 ones,Derivative, Coumarin,Derivatives, 1,2-Benzopyrone,Derivatives, Coumarin
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001189 Aryl Hydrocarbon Hydroxylases A large group of cytochrome P-450 (heme-thiolate) monooxygenases that complex with NAD(P)H-FLAVIN OXIDOREDUCTASE in numerous mixed-function oxidations of aromatic compounds. They catalyze hydroxylation of a broad spectrum of substrates and are important in the metabolism of steroids, drugs, and toxins such as PHENOBARBITAL, carcinogens, and insecticides. Microsomal Monooxygenases,Xenobiotic Monooxygenases,Hydroxylases, Aryl Hydrocarbon,Monooxygenases, Microsomal,Monooxygenases, Xenobiotic
D013250 Steroid Hydroxylases Cytochrome P-450 monooxygenases (MIXED FUNCTION OXYGENASES) that are important in steroid biosynthesis and metabolism. Steroid Hydroxylase,Steroid Monooxygenases,Hydroxylase, Steroid,Hydroxylases, Steroid,Monooxygenases, Steroid

Related Publications

D R Davydov, and T V Knyushko, and I P Kanaeva, and Y M Koen, and N F Samenkova, and A I Archakov, and G Hui Bon Hoa
January 2000, Journal of biochemistry,
D R Davydov, and T V Knyushko, and I P Kanaeva, and Y M Koen, and N F Samenkova, and A I Archakov, and G Hui Bon Hoa
February 2008, The Journal of biological chemistry,
D R Davydov, and T V Knyushko, and I P Kanaeva, and Y M Koen, and N F Samenkova, and A I Archakov, and G Hui Bon Hoa
January 2010, Biomeditsinskaia khimiia,
D R Davydov, and T V Knyushko, and I P Kanaeva, and Y M Koen, and N F Samenkova, and A I Archakov, and G Hui Bon Hoa
July 1992, The Journal of biological chemistry,
D R Davydov, and T V Knyushko, and I P Kanaeva, and Y M Koen, and N F Samenkova, and A I Archakov, and G Hui Bon Hoa
November 1999, Archives of biochemistry and biophysics,
D R Davydov, and T V Knyushko, and I P Kanaeva, and Y M Koen, and N F Samenkova, and A I Archakov, and G Hui Bon Hoa
February 1976, Archives of biochemistry and biophysics,
D R Davydov, and T V Knyushko, and I P Kanaeva, and Y M Koen, and N F Samenkova, and A I Archakov, and G Hui Bon Hoa
April 1994, Biochemical and biophysical research communications,
D R Davydov, and T V Knyushko, and I P Kanaeva, and Y M Koen, and N F Samenkova, and A I Archakov, and G Hui Bon Hoa
March 2005, Archives of biochemistry and biophysics,
D R Davydov, and T V Knyushko, and I P Kanaeva, and Y M Koen, and N F Samenkova, and A I Archakov, and G Hui Bon Hoa
June 2011, Drug metabolism and disposition: the biological fate of chemicals,
D R Davydov, and T V Knyushko, and I P Kanaeva, and Y M Koen, and N F Samenkova, and A I Archakov, and G Hui Bon Hoa
October 2007, The Journal of biological chemistry,
Copied contents to your clipboard!