Antigenic mapping of bacterial and animal cytochromes P-450. 1996

E F Kolesanova, and J G Kiselar, and C Jung, and S A Kozin, and G Hui Bon Hoa, and A I Archakov
Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, Russia.

A peptide scanning (PEPSCAN) approach was used for antigenic mapping of two hepatic microsomal cytochromes P450 (rab1A2 and rab2B4) and the microbial cytochrome from Pseudomonas putida (P450 101 or P450cam). This approach includes simultaneous synthesis of pin-linked overlapping hexapeptides covering the whole sequences of three P450s and testing them by ELISA with corresponding polyclonal antisera. Microsomal cytochrome P450 maps were shown to vary depending on an antiserum used for testing the peptides, however, the most active linear B-epitopes were revealed with antisera from two animal species used. P450 linear B-epitopes were classified into individual and group-specific epitopes. While almost all P450 101 linear antigenic determinants are unique for this protein, rab1A2 and rab2B4 contain epitopes both individual for each protein, and subfamily- or even family-specific epitopes. These results point out the possibility of producing both monospecific and group-specific antipeptide antibodies against different P450s. The antigenic map of P450 101 was superimposed on the structural-functional map of this protein. Its linear B-epitopes were shown to coincide with boundaries of secondary structure elements, with surface-located, water accessible regions and with sites responsible for intermolecular interactions in the Pseudomonas putida monooxygenase system. Several known or predicted functionally active sites in microsomal cytochrome P450 rab1A2 and rab2B4 were also shown to coincide with linear B-epitopes. The peculiarities of epitope locations in the protein tertiary structure will allow to predict antigenic regions starting from protein structural information and vice versa, to structural protein models in accordance with antigenic mapping results. Antigenic regions which coincide with sites responsible for intermolecular interactions in monooxygenase systems may be synthesized as separate peptides and used as blockers of such interactions.

UI MeSH Term Description Entries
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001189 Aryl Hydrocarbon Hydroxylases A large group of cytochrome P-450 (heme-thiolate) monooxygenases that complex with NAD(P)H-FLAVIN OXIDOREDUCTASE in numerous mixed-function oxidations of aromatic compounds. They catalyze hydroxylation of a broad spectrum of substrates and are important in the metabolism of steroids, drugs, and toxins such as PHENOBARBITAL, carcinogens, and insecticides. Microsomal Monooxygenases,Xenobiotic Monooxygenases,Hydroxylases, Aryl Hydrocarbon,Monooxygenases, Microsomal,Monooxygenases, Xenobiotic
D013250 Steroid Hydroxylases Cytochrome P-450 monooxygenases (MIXED FUNCTION OXYGENASES) that are important in steroid biosynthesis and metabolism. Steroid Hydroxylase,Steroid Monooxygenases,Hydroxylase, Steroid,Hydroxylases, Steroid,Monooxygenases, Steroid
D016958 Pseudomonas putida A species of gram-negative, aerobic bacteria isolated from soil and water as well as clinical specimens. Occasionally it is an opportunistic pathogen.
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D018604 Epitope Mapping Methods used for studying the interactions of antibodies with specific regions of protein antigens. Important applications of epitope mapping are found within the area of immunochemistry. Epitope Mappings,Mapping, Epitope,Mappings, Epitope
D018985 Epitopes, B-Lymphocyte Antigenic determinants recognized and bound by the B-cell receptor. Epitopes recognized by the B-cell receptor are located on the surface of the antigen. B-Cell Epitopes,B-Lymphocyte Epitopes,B-Cell Epitope,B-Lymphocyte Epitope,B Cell Epitope,B Cell Epitopes,B Lymphocyte Epitope,B Lymphocyte Epitopes,Epitope, B-Cell,Epitope, B-Lymphocyte,Epitopes, B Lymphocyte,Epitopes, B-Cell

Related Publications

E F Kolesanova, and J G Kiselar, and C Jung, and S A Kozin, and G Hui Bon Hoa, and A I Archakov
June 1996, Molecular microbiology,
E F Kolesanova, and J G Kiselar, and C Jung, and S A Kozin, and G Hui Bon Hoa, and A I Archakov
January 1988, Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology,
E F Kolesanova, and J G Kiselar, and C Jung, and S A Kozin, and G Hui Bon Hoa, and A I Archakov
June 1978, Biochemical and biophysical research communications,
E F Kolesanova, and J G Kiselar, and C Jung, and S A Kozin, and G Hui Bon Hoa, and A I Archakov
January 1984, Xenobiotica; the fate of foreign compounds in biological systems,
E F Kolesanova, and J G Kiselar, and C Jung, and S A Kozin, and G Hui Bon Hoa, and A I Archakov
September 1986, Microbiological reviews,
E F Kolesanova, and J G Kiselar, and C Jung, and S A Kozin, and G Hui Bon Hoa, and A I Archakov
July 1983, The New England journal of medicine,
E F Kolesanova, and J G Kiselar, and C Jung, and S A Kozin, and G Hui Bon Hoa, and A I Archakov
January 1987, Advances in enzymology and related areas of molecular biology,
E F Kolesanova, and J G Kiselar, and C Jung, and S A Kozin, and G Hui Bon Hoa, and A I Archakov
June 1989, Plant physiology,
E F Kolesanova, and J G Kiselar, and C Jung, and S A Kozin, and G Hui Bon Hoa, and A I Archakov
May 1983, Biochemical and biophysical research communications,
E F Kolesanova, and J G Kiselar, and C Jung, and S A Kozin, and G Hui Bon Hoa, and A I Archakov
October 1984, The Journal of biological chemistry,
Copied contents to your clipboard!