Structural aspects of interfacial adsorption. A crystallographic and site-directed mutagenesis study of the phospholipase A2 from the venom of Agkistrodon piscivorus piscivorus. 1997

S K Han, and E T Yoon, and D L Scott, and P B Sigler, and W Cho
Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607-7061, USA.

Recent genetic and structural studies have shed considerable light on the mechanism by which secretory phospholipases A2 interact with substrate aggregates. Electrostatic forces play an essential role in optimizing interfacial catalysis. Efficient and productive adsorption of the Class I bovine pancreatic phospholipase A2 to anionic interfaces is dependent upon the presence of two nonconserved lysine residues at sequence positions 56 and 116, implying that critical components of the adsorption surface differ among enzyme species (Dua, R., Wu, S.-K., and Cho, W. (1995) J. Biol. Chem. 270, 263-268). In an effort to further characterize the protein residues involved in interfacial catalysis, we have determined the high resolution (1.7 A) x-ray structure of the Class II Asp-49 phospholipase A2 from the venom of Agkistrodon piscivorus piscivorus. Correlation of the three-dimensional coordinates with kinetic data derived from site-directed mutations near the amino terminus (E6R, K7E, K10E, K11E, and K16E) and the active site (K54E and K69Y) defines much of the interface topography. Lysine residues at sequence positions 7 and 10 mediate the adsorption of A. p. piscivorus phospholipase A2 to anionic interfaces but play little role in the enzyme's interaction with electrically neutral surfaces or in substrate binding. Compared to the native enzyme, the mutant proteins K7E and K10E demonstrate comparable (20-fold) decreases in affinity and catalysis on polymerized mixed liposomes of 1-hexadecanoyl-2-(1-pyrenedecanoyl)-sn-glycero-3-phosphocholine and 1,2-bis[12-(lipoyloxy)dodecanoyl]-sn-glycero-3-phosphoglycerol, while the double mutant, K7E/K10E, shows a more dramatic 500-fold decrease in catalysis and interfacial adsorption. The calculated contributions of Lys-7 and Lys-10 to the free energy of binding of A. p. piscivorus phospholipase A2 to anionic liposomes (-1.8 kcal/mol at 25 degrees C per lysine) are additive (i.e. -3.7 kcal/mol) and together represent nearly half of the total binding energy. Although both lysine side chains lie exposed at the edge of the proposed interfacial adsorption surface, they are geographically remote from the corresponding interfacial determinants for the bovine enzyme. Our results confirm that interfacial adsorption is largely driven by electrostatic forces and demonstrate that the arrangement of the critical charges (e.g. lysines) is species-specific. This variability in the topography of the adsorption surface suggests a corresponding flexibility in the orientation of the active enzyme at the substrate interface.

UI MeSH Term Description Entries
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008823 Micelles Particles consisting of aggregates of molecules held loosely together by secondary bonds. The surface of micelles are usually comprised of amphiphatic compounds that are oriented in a way that minimizes the energy of interaction between the micelle and its environment. Liquids that contain large numbers of suspended micelles are referred to as EMULSIONS. Micelle
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010741 Phospholipases A Phospholipases that hydrolyze one of the acyl groups of phosphoglycerides or glycerophosphatidates.
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002942 Circular Dichroism A change from planar to elliptic polarization when an initially plane-polarized light wave traverses an optically active medium. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Circular Dichroism, Vibrational,Dichroism, Circular,Vibrational Circular Dichroism
D003435 Crotalid Venoms Venoms from snakes of the subfamily Crotalinae or pit vipers, found mostly in the Americas. They include the rattlesnake, cottonmouth, fer-de-lance, bushmaster, and American copperhead. Their venoms contain nontoxic proteins, cardio-, hemo-, cyto-, and neurotoxins, and many enzymes, especially phospholipases A. Many of the toxins have been characterized. Bothrops Venom,Crotalidae Venoms,Pit Viper Venoms,Rattlesnake Venoms,Crotactin,Crotalid Venom,Crotalin,Crotaline Snake Venom,Crotalotoxin,Crotamin,Pit Viper Venom,Rattlesnake Venom,Snake Venom, Crotaline,Venom, Bothrops,Venom, Crotalid,Venom, Crotaline Snake,Venom, Pit Viper,Venom, Rattlesnake,Venoms, Crotalid,Venoms, Crotalidae,Venoms, Pit Viper,Venoms, Rattlesnake,Viper Venom, Pit
D000327 Adsorption The adhesion of gases, liquids, or dissolved solids onto a surface. It includes adsorptive phenomena of bacteria and viruses onto surfaces as well. ABSORPTION into the substance may follow but not necessarily. Adsorptions

Related Publications

S K Han, and E T Yoon, and D L Scott, and P B Sigler, and W Cho
April 1970, Biochimica et biophysica acta,
S K Han, and E T Yoon, and D L Scott, and P B Sigler, and W Cho
January 2013, BioMed research international,
S K Han, and E T Yoon, and D L Scott, and P B Sigler, and W Cho
March 1993, The Journal of biological chemistry,
S K Han, and E T Yoon, and D L Scott, and P B Sigler, and W Cho
April 1986, The Journal of biological chemistry,
S K Han, and E T Yoon, and D L Scott, and P B Sigler, and W Cho
November 1992, The Journal of biological chemistry,
S K Han, and E T Yoon, and D L Scott, and P B Sigler, and W Cho
September 1986, The Journal of biological chemistry,
S K Han, and E T Yoon, and D L Scott, and P B Sigler, and W Cho
March 2001, Biochemistry,
S K Han, and E T Yoon, and D L Scott, and P B Sigler, and W Cho
January 1989, The Journal of biological chemistry,
Copied contents to your clipboard!