Characterization of gonadotropin-releasing hormone gene transcripts in a mouse hypothalamic neuronal GT1 cell line. 1996

T T Yeo, and A C Gore, and M Jakubowski, and K W Dong, and M Blum, and J L Roberts
Fishberg Research Center for Neurobiology, Mount Sinai School of Medicine, New York, NY 10029, USA.

We have characterized the nuclear and cytoplasmic RNA transcripts derived from the gonadotropin releasing hormone (GnRH) gene in a mouse hypothalamic neuronal GT1 cell line. Analyses of nuclear GnRH RNA precursors present in the GT1 cells by RNase protection assay show that there is no particular order of intron excision, suggesting the existence of multiple processing pathways. A similar pattern is observed in mouse preoptic area-anterior hypothalamus (POA-AH). In GT1 cells, approximately 5% of the total GnRH RNA transcripts are found in the nucleus. In contrast, in the POA-AH of mice, nuclear transcripts comprise 40% of the total GnRH transcripts. Thus the GT1 cells, while similar in overall GnRH RNA processing to mouse hypothalamic GnRH neurons, do not exhibit the high abundance of nuclear GnRH RNA transcripts seen in the rodent GnRH neuron in vivo. Quantitative analysis of the nuclear RNA species shows that the GnRH primary transcript comprises more than 90% of the total nuclear GnRH mRNA precursors in both GT1 cells and mouse POA-AH and thus GnRH processing intermediates account for fewer than 10% of these precursors. Using these probes, we have examined changes in GnRH primary transcript expression in GT1-7 cells. In the presence of RNA synthesis inhibitors, the half-life of the GnRH primary transcript was found to be quite short, approximately 18 min, suggesting that the level of primary transcript would reflect levels of GnRH gene transcription. When GT1-7 cells are treated with the phorbol ester PMA (phorbol, 12-myristate, 13-acetate) for 1 h, GnRH primary transcript levels decrease by approximately 70%. Supporting the hypothesis that GnRH primary transcript is a good indicator of GnRH gene transcription is the finding that 1 h of PMA treatment results in a similar (approximately 50%) decrease in GnRH gene transcription, as assayed by nuclear run-on assay. Our observation that GT1 cells resemble mouse hypothalamic GnRH neurons in their pattern of intron excision and in the ratio of primary transcript to other nuclear transcripts emphasizes the utility of these cells for studying the regulation of GnRH gene expression in this immortalized hypothalamic cell line.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D007987 Gonadotropin-Releasing Hormone A decapeptide that stimulates the synthesis and secretion of both pituitary gonadotropins, LUTEINIZING HORMONE and FOLLICLE STIMULATING HORMONE. GnRH is produced by neurons in the septum PREOPTIC AREA of the HYPOTHALAMUS and released into the pituitary portal blood, leading to stimulation of GONADOTROPHS in the ANTERIOR PITUITARY GLAND. FSH-Releasing Hormone,GnRH,Gonadoliberin,Gonadorelin,LH-FSH Releasing Hormone,LHRH,Luliberin,Luteinizing Hormone-Releasing Hormone,Cystorelin,Dirigestran,Factrel,Gn-RH,Gonadorelin Acetate,Gonadorelin Hydrochloride,Kryptocur,LFRH,LH-RH,LH-Releasing Hormone,LHFSH Releasing Hormone,LHFSHRH,FSH Releasing Hormone,Gonadotropin Releasing Hormone,LH FSH Releasing Hormone,LH Releasing Hormone,Luteinizing Hormone Releasing Hormone,Releasing Hormone, LHFSH
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

T T Yeo, and A C Gore, and M Jakubowski, and K W Dong, and M Blum, and J L Roberts
June 2002, Molecular and cellular endocrinology,
T T Yeo, and A C Gore, and M Jakubowski, and K W Dong, and M Blum, and J L Roberts
June 1994, Molecular and cellular endocrinology,
T T Yeo, and A C Gore, and M Jakubowski, and K W Dong, and M Blum, and J L Roberts
January 2009, Neuroendocrinology,
T T Yeo, and A C Gore, and M Jakubowski, and K W Dong, and M Blum, and J L Roberts
December 2003, The Journal of neuroscience : the official journal of the Society for Neuroscience,
T T Yeo, and A C Gore, and M Jakubowski, and K W Dong, and M Blum, and J L Roberts
October 1997, Brain research. Molecular brain research,
T T Yeo, and A C Gore, and M Jakubowski, and K W Dong, and M Blum, and J L Roberts
October 1991, Neuroendocrinology,
T T Yeo, and A C Gore, and M Jakubowski, and K W Dong, and M Blum, and J L Roberts
March 1994, Endocrinology,
T T Yeo, and A C Gore, and M Jakubowski, and K W Dong, and M Blum, and J L Roberts
January 1994, Neuroscience letters,
T T Yeo, and A C Gore, and M Jakubowski, and K W Dong, and M Blum, and J L Roberts
March 1994, Endocrinology,
T T Yeo, and A C Gore, and M Jakubowski, and K W Dong, and M Blum, and J L Roberts
January 2014, Endocrine journal,
Copied contents to your clipboard!